• Agrawal, Y. C., Terray E. A. , Donelan M. A. , Hwang P. A. , Williams A. J. III, Drennan W. M. , Kahma K. K. , and Kitaigorodskii S. A. , 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, doi:10.1038/359219a0.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and Moum J. , 1992: The superadiabatic surface layer of the ocean during convection. J. Phys. Oceanogr., 22, 12211227, doi:10.1175/1520-0485(1992)022<1221:TSSLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Antonia, R. A., Browne L. W. B. , and Shah D. A. , 1988: Characteristics of vorticity fluctuations in a turbulent wake. J. Fluid Mech., 189, 349365, doi:10.1017/S0022112088001053.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., Jones I. S. F. , and Trinder J. C. , 1989: Wavenumber spectra of short gravity waves. J. Fluid Mech., 198, 321344, doi:10.1017/S0022112089000157.

    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., 2006: Measurements of short water waves using stereo matched image sequences. Coastal Eng., 53, 10131032, doi:10.1016/j.coastaleng.2006.06.012.

    • Search Google Scholar
    • Export Citation
  • Bouguet, J.-Y., 2010: Camera calibration toolbox for MATLAB. Access 6 January 2009. [Available online at www.vision.caltech.edu/bouguetj/calib_doc/.]

  • Chickadel, C., Talke S. , Horner-Devine A. , and Jessup A. , 2011: Infrared-based measurements of velocity, turbulent kinetic energy, and dissipation at the water surface in a tidal river. IEEE Geosci. Remote Sens. Lett., 8, 849853, doi:10.1109/LGRS.2011.2125942.

    • Search Google Scholar
    • Export Citation
  • Corpetti, T., Mémin E. , and Pérez P. , 2003: Extraction of singular points from dense motion fields: An analytic approach. J. Math. Imaging Vision, 19, 175198, doi:10.1023/A:1026352203836.

    • Search Google Scholar
    • Export Citation
  • Deike, L., Popinet S. , and Melville W. K. , 2015: Capillary effects on wave breaking. J. Fluid Mech.,769, 541–569, doi:10.1017/jfm.2015.103.

  • Dickey, T., and Coauthors, 2012: Introduction to special section on recent advances in the study of optical variability in the near-surface and upper ocean. J. Geophys. Res., 117, C00H20, doi:10.1029/2012JC007964.

    • Search Google Scholar
    • Export Citation
  • Drazen, D. A., Melville W. K. , and Lenain L. , 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332, doi:10.1017/S0022112008002826.

    • Search Google Scholar
    • Export Citation
  • Drennan, W., Donelan M. , Terray E. , and Katsaros K. , 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26, 808815, doi:10.1175/1520-0485(1996)026<0808:OTDMIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fusiello, A., and Irsara L. , 2008: Quasi-Euclidean uncalibrated epipolar rectification. 19th International Conference on Pattern Recognition, 2008, IEEE, 4 pp., doi:10.1109/ICPR.2008.4761561.

  • Garbe, C. S., Spies H. , and Jähne B. , 2003: Estimation of complex motion from thermographic image sequences. Thermosense XXV, K. E. Cramer, and X. P. Maldague, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5073), 303317.

  • Gargett, A. E., 1989: Ocean turbulence. Annu. Rev. Fluid Mech., 21, 419451, doi:10.1146/annurev.fl.21.010189.002223.

  • Gargett, A. E., 1999: Velcro measurement of turbulence kinetic energy dissipation rate ε. J. Atmos. Oceanic Technol., 16, 19731993, doi:10.1175/1520-0426(1999)016<1973:VMOTKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595, doi:10.1175/2009JPO4179.1.

  • Gerbi, G. P., Trowbridge J. H. , Terray E. A. , Plueddemann A. J. , and Kukulka T. , 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, doi:10.1175/2008JPO4044.1.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, R. C., Woods R. E. , and Eddins S. L. , 2009: Digital Image Processing Using MATLAB. 2nd ed. Gatesmark Publishing, 827 pp.

  • Goto, S., and Vassilicos J. C. , 2009: The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys. Fluids,21, 035104, doi:10.1063/1.3085721.

  • Grant, H. L., Stewart R. W. , and Moilliet A. A. , 1962: Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241268, doi:10.1017/S002211206200018X.

    • Search Google Scholar
    • Export Citation
  • Grare, L., Peirson W. L. , Branger H. , Walker J. W. , Giovanangeli J.-P. , and Makin V. , 2013: Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech., 722, 550, doi:10.1017/jfm.2013.88.

    • Search Google Scholar
    • Export Citation
  • Hartley, R., and Zisserman A. , 2003: Multiple View Geometry in Computer Vision. 2nd ed. Cambridge University Press, 655 pp.

  • Hilsenstein, V., 2005: Surface reconstruction of water waves using thermographic stereo imaging. Proceedings of Image and Vision Computing New Zealand (IVCNZ 2005), B. McCane, Ed., University of Otago, 102–107.

  • Jähne, B., Klinke J. , and Waas S. , 1994: Imaging of short ocean wind waves: A critical theoretical review. J. Opt. Soc. Amer., 11A, 21972209, doi:10.1364/JOSAA.11.002197.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., and Lumley J. L. , 1983: Wave–turbulence interactions in the upper ocean. Part I: The energy balance of the interacting fields of surface wind waves and wind-induced three-dimensional turbulence. J. Phys. Oceanogr., 13, 1977–1987, doi:10.1175/1520-0485(1983)013<1977:WTIITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., Donelan M. , Lumley J. L. , and Terray E. , 1983: Wave–turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13, 19881999, doi:10.1175/1520-0485(1983)013<1988:WTIITU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2007: Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J. Atmos. Sci., 64, 10171025, doi:10.1175/JAS3864.1.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and Terray E. A. , 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13, 20002007, doi:10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., Soatto S. , Koseckà J. , and Sastry S. S. , 2004: An Invitation to 3-D Vision: From Images to Geometric Models. Interdisciplinary Applied Mathematics, Vol. 26, Springer, 528 pp., doi:10.1007/978-0-387-21779-6.

  • Mazellier, N., and Vassilicos J. C. , 2008: The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids,20, 015101, doi:10.1063/1.2832778.

  • Melville, W. K., 1994: Energy dissipation in breaking waves. J. Phys. Oceanogr., 24, 20412049, doi:10.1175/1520-0485(1994)024<2041:EDBBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, doi:10.1146/annurev.fl.28.010196.001431.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., and Fedorov A. , 2015: The equilibrium dynamics and statistics of gravity–capillary waves. J. Fluid Mech., 767, 449–466, doi:10.1017/jfm.2014.740.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., Veron F. , and White C. J. , 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454, 203233, doi:10.1017/S0022112001007078.

    • Search Google Scholar
    • Export Citation
  • Mollo-Christensen, E., 1968: Wind tunnel test of the superstructure of the R/V Flip for assessment of wind field distortion. MIT Fluid Dynamics Laboratory, 34 pp.

  • Osborn, T., Farmer D. M. , Vagle S. , Thorpe S. A. , and Cure M. , 1992: Measurements of bubble plumes and turbulence from a submarine. Atmos.–Ocean,30, 419–440, doi:10.1080/07055900.1992.9649447.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Pizzo, N. E., and Melville W. K. , 2013: Vortex generation by deep-water breaking waves. J. Fluid Mech., 734, 198218, doi:10.1017/jfm.2013.453.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Rocholz, R., Wanner S. , Schimpf U. , and Jähne B. , 2011: Combined visualization of wind waves and water surface temperature. Contributions from the International Symposium on Gas Transfer at Water Surfaces, S. Komori, W. McGillis, and R. Kurose, Eds., Kyoto University Press, 496–506.

  • Romero, L., Melville W. K. , and Kleiss J. M. , 2012: Spectral energy dissipation due to surface-wave breaking. J. Phys. Oceanogr., 42, 14211444, doi:10.1175/JPO-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Saddoughi, S. G., and Veeravalli S. V. , 1994: Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech., 268, 333372, doi:10.1017/S0022112094001370.

    • Search Google Scholar
    • Export Citation
  • Shemdin, O. H., Tran H. M. , and Wu S. C. , 1988: Directional measurement of short ocean waves with stereophotography. J. Geophys. Res., 93, 13 89113 901, doi:10.1029/JC093iC11p13891.

    • Search Google Scholar
    • Export Citation
  • Shen, L., and Yue D. K. P. , 2001: Large-eddy simulation of free-surface turbulence. J. Fluid Mech., 440, 75116, doi:10.1017/S0022112001004669.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2008: Vorticity and divergence of surface velocities near shore. J. Phys. Oceanogr., 38, 14501468, doi:10.1175/2007JPO3865.1.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Rieder K. F. , 1997: Wave induced motion of flip. Ocean Eng., 24, 95110, doi:10.1016/0029-8018(96)00008-X.

  • Soloviev, A., Vershinsky N. , and Bezverchnii V. , 1988: Small-scale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res., 35A, 18591874, doi:10.1016/0198-0149(88)90113-6.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1984: On the scaling of the turbulence energy dissipation rate. Phys. Fluids,27, 1048, doi:10.1063/1.864731.

  • Sreenivasan, K. R., 1998: An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids,10, 528, doi:10.1063/1.869575.

  • Stewart, R. W., and Grant H. L. , 1962: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. J. Geophys. Res., 67, 31773180, doi:10.1029/JZ067i008p03177.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., 2013: On breaking waves and turbulence at the air-sea interface. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, San Diego, 117 pp.

  • Sutherland, P., and Melville W. K. , 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett.,40, 3074–3079, doi:10.1002/grl.50584.

  • Sutherland, P., and Melville W. K. , 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, doi:10.1175/JPO-D-14-0133.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1935: Statistical theory of turbulence. Proc. Roy. Soc. London, 151A, 421444, doi:10.1098/rspa.1935.0158.

  • Tennekes, H., and Lumley J. L. , 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Terray, E. A., Donelan M. A. , Agrawal Y. C. , Drennan W. M. , Kahma K. K. , Williams A. J. III, Hwang P. A. , and Kitaigorodskii S. A. , 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thielicke, W., and Stamhuis E. J. , 2010: PIVlab—Time-resolved digital particle image velocimetry tool for MATLAB. Accessed 17 August 2011. [Available online at http://pivlab.blogspot.com/.]

  • Trowbridge, J. H., 1998: On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Oceanic Technol., 15, 290298, doi:10.1175/1520-0426(1998)015<0290:OATFMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turney, D. E., Andere A. , and Banerjee S. , 2009: A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air–water interface. Meas. Sci. Technol.,20, 045403, doi:10.1088/0957-0233/20/4/045403.

  • Veron, F., Melville W. K. , and Lenain L. , 2008: Infrared techniques for measuring ocean surface processes. J. Atmos. Oceanic Technol., 25, 307326, doi:10.1175/2007JTECHO524.1.

    • Search Google Scholar
    • Export Citation
  • Veron, F., Melville W. K. , and Lenain L. , 2009: Measurements of ocean surface turbulence and wave–turbulence interactions. J. Phys. Oceanogr., 39, 23102323, doi:10.1175/2009JPO4019.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 130 7
PDF Downloads 202 88 11

Measuring Turbulent Kinetic Energy Dissipation at a Wavy Sea Surface

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
Restricted access

Abstract

Wave breaking is thought to be the dominant mechanism for energy loss by the surface wave field. Breaking results in energetic and highly turbulent velocity fields, concentrated within approximately one wave height of the surface. To make meaningful estimates of wave energy dissipation in the upper ocean, it is then necessary to make accurate measurements of turbulent kinetic energy (TKE) dissipation very near the surface. However, the surface wave field makes measurements of turbulence at the air–sea interface challenging since the energy spectrum contains energy from both waves and turbulence over the same range of wavenumbers and frequencies. Furthermore, wave orbital velocities can advect the turbulent wake of instrumentation into the sampling volume of the instrument. In this work a new technique for measuring TKE dissipation at the sea surface that overcomes these difficulties is presented. Using a stereo pair of longwave infrared cameras, it is possible to reconstruct the surface displacement and velocity fields. The vorticity of that velocity field can then be considered to be representative of the rotational turbulence and not the irrotational wave orbital velocities. The turbulent kinetic energy dissipation rate can then be calculated by comparing the vorticity spectrum to a universal spectrum. Average surface TKE dissipation calculated in this manner was found to be consistent with near-surface values from the literature, and time-dependent dissipation was found to depend on breaking.

Current affiliation: Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, Paris, France.

Corresponding author address: Peter Sutherland, Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France. E-mail: peter.sutherland@locean-ipsl.upmc.fr

Abstract

Wave breaking is thought to be the dominant mechanism for energy loss by the surface wave field. Breaking results in energetic and highly turbulent velocity fields, concentrated within approximately one wave height of the surface. To make meaningful estimates of wave energy dissipation in the upper ocean, it is then necessary to make accurate measurements of turbulent kinetic energy (TKE) dissipation very near the surface. However, the surface wave field makes measurements of turbulence at the air–sea interface challenging since the energy spectrum contains energy from both waves and turbulence over the same range of wavenumbers and frequencies. Furthermore, wave orbital velocities can advect the turbulent wake of instrumentation into the sampling volume of the instrument. In this work a new technique for measuring TKE dissipation at the sea surface that overcomes these difficulties is presented. Using a stereo pair of longwave infrared cameras, it is possible to reconstruct the surface displacement and velocity fields. The vorticity of that velocity field can then be considered to be representative of the rotational turbulence and not the irrotational wave orbital velocities. The turbulent kinetic energy dissipation rate can then be calculated by comparing the vorticity spectrum to a universal spectrum. Average surface TKE dissipation calculated in this manner was found to be consistent with near-surface values from the literature, and time-dependent dissipation was found to depend on breaking.

Current affiliation: Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, Paris, France.

Corresponding author address: Peter Sutherland, Laboratoire d’Océanographie et du Climat, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France. E-mail: peter.sutherland@locean-ipsl.upmc.fr
Save