• Furuichi, N., Hibiya T. , and Niwa Y. , 2005: Bispectral analysis of energy transfer within the two-dimensional oceanic internal wave field. J. Phys. Oceanogr., 35, 21042109, doi:10.1175/JPO2816.1.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and Munk W. , 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., Winkel D. P. , and Sanford T. B. , 1993: Varieties of fully resolved spectra of vertical shear. J. Phys. Oceanogr., 23, 124141, doi:10.1175/1520-0485(1993)023<0124:VOFRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., Sanford T. B. , and Winkel D. P. , 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., Wright J. , and Flatté S. M. , 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and Nagasawa M. , 2004: Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization. Geophys. Res. Lett., 31, L01301, doi:10.1029/2003GL017998.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Nagasawa M. , and Niwa Y. , 2002: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, doi:10.1029/2001JC001210.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Nagasawa M. , and Niwa Y. , 2007: Latitudinal dependence of diapycnal diffusivity in the thermocline observed using a microstructure profiler. Geophys. Res. Lett., 34, L24602, doi:10.1029/2007GL032323.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., Furuichi N. , and Robertson R. , 2012: Assessment of fine-scale parameterizations of turbulent dissipation rates near mixing hotspots in the deep ocean. Geophys. Res. Lett., 39, L24601, doi:10.1029/2012GL054068.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and McDougall T. J. , 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, doi:10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., Alford M. H. , Pinkel R. , Klymak J. , and Zhao Z. , 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and Wunsch C. , 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., Hibiya T. , Yokota K. , Tanaka Y. , and Takagi S. , 2007: Microstructure measurements in the mid-depth waters of the North Pacific. Geophys. Res. Lett., 34, L05608, doi:10.1029/2006GL028695.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and Hibiya T. , 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22 44122 449, doi:10.1029/2000JC000770.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., Toole J. M. , and Schmitt R. W. , 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., Garabato A. C. N. , Huussen T. N. , Sloyan B. M. , and Waterman S. , 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, doi:10.1002/2013JC008979.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., 1971: Motionally induced electric and magnetic fields in the sea. J. Geophys. Res., 76, 34763492, doi:10.1029/JC076i015p03476.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., Drever R. G. , and Dunlap J. H. , 1974: The design and performance of a free-fall electro-magnetic velocity profiler (EMVP). Woods Hole Oceanographic Institution Tech. Rep. WHOI-TR-5, WHOI-74-46, 114 pp.

  • Sanford, T. B., D’Asaro E. A. , Kunze E. L. , Dunlap J. H. , Drever R. G. , Kennelly M. A. , Prater M. D. , and Horgan M. S. , 1993: An XCP user’s guide and reference manual. Tech. Rep. APL-UW TR 9309, Applied Physics Laboratory, University of Washington, 59 pp.

  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, doi:10.1002/jgrc.20217.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., Hasumi H. , and Suginohara N. , 2000: Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths. J. Phys. Oceanogr., 30, 28532865, doi:10.1175/1520-0485(2001)031<2853:DPCCBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., Cimatoribus A. , and Gostiaux L. , 2015: Where large deep-ocean waves break. Geophys. Res. Lett., 42, 23512357, doi:10.1002/2015GL063329.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., Garabato A. C. N. , and Polzin K. L. , 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., Padman L. , Dillon T. , Levine M. , Paulson C. , and Pinkel R. , 1993: The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269286, doi:10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 68 3
PDF Downloads 122 59 8

Frequency-Based Correction of Finescale Parameterization of Turbulent Dissipation in the Deep Ocean

View More View Less
  • 1 Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Tokyo, Japan
Restricted access

Abstract

Among the existing finescale parameterizations of turbulent dissipation rates, the Gregg–Henyey–Polzin (GHP) parameterization is thought to produce the most accurate estimates of turbulent dissipation rates since it takes into account distortions from the Garrett–Munk (GM) spectrum using the shear/strain ratio . The GHP parameterization, however, applies the single-wave approximation to infer turbulent dissipation rates in broadband internal wave spectra with a multiplication factor up to 3, so as to adjust the predicted value at to the theoretical value for the GM spectrum. Because of this multiplication, the GHP parameterization overestimates the dissipation rates for . This study explores the possibility of further improvements of the GHP parameterization and reformulates the parameterization to make it applicable to both 1) a narrowband frequency spectrum characterized by a prominent near-inertial peak () and 2) a broadband frequency spectrum like the GM (). Furthermore, the performance of the modified parameterization is assessed in comparison with the GHP parameterization using the available microstructure data obtained near prominent topographic features in the North Pacific.

Corresponding author address: Takashi Ijichi, Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: ijichi@eps.s.u-tokyo.ac.jp

Abstract

Among the existing finescale parameterizations of turbulent dissipation rates, the Gregg–Henyey–Polzin (GHP) parameterization is thought to produce the most accurate estimates of turbulent dissipation rates since it takes into account distortions from the Garrett–Munk (GM) spectrum using the shear/strain ratio . The GHP parameterization, however, applies the single-wave approximation to infer turbulent dissipation rates in broadband internal wave spectra with a multiplication factor up to 3, so as to adjust the predicted value at to the theoretical value for the GM spectrum. Because of this multiplication, the GHP parameterization overestimates the dissipation rates for . This study explores the possibility of further improvements of the GHP parameterization and reformulates the parameterization to make it applicable to both 1) a narrowband frequency spectrum characterized by a prominent near-inertial peak () and 2) a broadband frequency spectrum like the GM (). Furthermore, the performance of the modified parameterization is assessed in comparison with the GHP parameterization using the available microstructure data obtained near prominent topographic features in the North Pacific.

Corresponding author address: Takashi Ijichi, Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. E-mail: ijichi@eps.s.u-tokyo.ac.jp
Save