• Artana, G., , Sosa R. , , Moreau E. , , and Touchard G. , 2003: Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators. Exp. Fluids, 35, 580588, doi:10.1007/s00348-003-0704-z.

    • Search Google Scholar
    • Export Citation
  • Barchyn, T. E., , Hugenholtz C. H. , , and Ellis J. T. , 2011: A call for standardization of aeolian process measurements: Moving beyond relative case studies. Earth Surf. Processes Landforms, 36, 702705, doi:10.1002/esp.2136.

    • Search Google Scholar
    • Export Citation
  • Bellot, H., , Trouvilliez A. , , Naaim-Bouvet F. , , Genthon C. , , and Gallée H. , 2011: Present weather-sensor tests for measuring drifting snow. Ann. Glaciol., 52, 176184, doi:10.3189/172756411797252356.

    • Search Google Scholar
    • Export Citation
  • Budd, W. F., , Dingle W. R. J. , , and Radok U. , 1966: The Byrd snow drift project outline and basic results. Studies in Antarctic Meteorology, M. J. Rubin, Ed., Antarctic Research Series, Vol. 9, Amer. Geophys. Union, 71–134.

  • Chritin, V., , Bolognesi R. , , and Gubler H. , 1999: FlowCapt: A new acoustic sensor to measure snowdrift and wind velocity for avalanche forecasting. Cold Reg. Sci. Technol., 30, 125133, doi:10.1016/S0165-232X(99)00012-9.

    • Search Google Scholar
    • Export Citation
  • Cierco, F.-X., , Naaim-Bouvet F. , , and Bellot H. , 2007: Acoustic sensors for snowdrift measurements: How should they be used for research purposes? Cold Reg. Sci. Technol., 49, 7487, doi:10.1016/j.coldregions.2007.01.002.

    • Search Google Scholar
    • Export Citation
  • Durand, Y., , Brun É. , , Mérindol L. , , Guyomarc’h G. , , Lesaffre B. , , and Martin É. , 1993: A meteorological estimation of relevant parameters for snow models. Ann. Glaciol., 18, 6571.

    • Search Google Scholar
    • Export Citation
  • Durand, Y., , Giraud G. , , Brun É. , , Mérindol L. , , and Martin É. , 1999: A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. J. Glaciol., 45, 469484.

    • Search Google Scholar
    • Export Citation
  • Gallée, H., , Trouvilliez A. , , Agosta C. , , Genthon C. , , Favier V. , , and Naaim-Bouvet F. , 2013: Transport of snow by the wind: A comparison between observations in Adélie Land, Antarctica, and simulations made with the regional climate model MAR. Bound.-Layer Meteor., 146, 133147, doi:10.1007/s10546-012-9764-z.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge Atmospheric and Space Science Series, Cambridge University Press, 316 pp.

  • Goodison, B. E., , Louie P. Y. T. , , and Yang D. , 1998: The WMO solid precipitation measurement intercomparison. Final Rep., WMO Instruments Observing Methods Rep. 67, WMO/TD-872, 212 pp.

  • Gordon, M., , Biswas S. , , Taylor P. A. , , Hanesiak J. , , Albarran-Melzer M. , , and Fargey S. , 2010: Measurements of drifting and blowing snow at Iqaluit, Nunavut, Canada during the star project. Atmos.–Ocean, 48, 81100, doi:10.3137/AO1105.2010.

    • Search Google Scholar
    • Export Citation
  • Guyomarc’h, G., , and Mérindol L. , 1998: Validation of an application for forecasting blowing snow. Ann. Glaciol., 26, 138143.

  • Jaedicke, C., 2001: Acoustic snowdrift measurements: Experiences from the FlowCapt instrument. Cold Reg. Sci. Technol., 32, 7181, doi:10.1016/S0165-232X(01)00017-9.

    • Search Google Scholar
    • Export Citation
  • Jaedicke, C., 2002: Snow drift losses from an Arctic catchment on Spitsbergen: An additional process in the water balance. Cold Reg. Sci. Technol., 34, 110, doi:10.1016/S0165-232X(01)00041-6.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., 1978: Snow transport by katabatic winds in Mizuho Camp area, East Antarctica. J. Meteor. Soc. Japan, 56, 130139.

  • Lehning, M., , and Fierz C. , 2008: Assessment of snow transport in avalanche terrain. Cold Reg. Sci. Technol., 51, 240252, doi:10.1016/j.coldregions.2007.05.012.

    • Search Google Scholar
    • Export Citation
  • Lehning, M., and et al. , 2002: Snow drift: Acoustic sensors for avalanche warning and research. Nat. Hazards Earth Syst. Sci., 2, 121128, doi:10.5194/nhess-2-121-2002.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., , Van Den Broeke M. R. , , van de Berg W. J. , , van Meijgaard E. , , and Kuipers Munneke P. , 2012: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, doi:10.1029/2011GL050713.

    • Search Google Scholar
    • Export Citation
  • Mann, G. W., , Anderson P. S. , , and Mobbs S. D. , 2000: Profile measurements of blowing snow at Halley, Antarctica. J. Geophys. Res., 105, 24 49124 508, doi:10.1029/2000JD900247.

    • Search Google Scholar
    • Export Citation
  • Michaux, J.-L., , Naaim-Bouvet F. , , and Naaim M. , 2001: Drifting-snow studies over an instrumented mountainous site: II. Measurements and numerical model at small scale. Ann. Glaciol., 32, 175181, doi:10.3189/172756401781819364.

    • Search Google Scholar
    • Export Citation
  • Naaim, M., , Durand Y. , , Eckert N. , , and Chambon G. , 2013: Dense avalanche friction coefficients: Influence of physical properties of snow. J. Glaciol., 59, 771782, doi:10.3189/2013JoG12J205.

    • Search Google Scholar
    • Export Citation
  • Naaim-Bouvet, F., , Bellot H. , , and Naaim M. , 2010: Back analysis of drifting-snow measurements over an instrumented mountainous site. Ann. Glaciol., 51, 207217, doi:10.3189/172756410791386661.

    • Search Google Scholar
    • Export Citation
  • Naaim-Bouvet, F., , Bellot H. , , Nishimura K. , , Genthon C. , , Palerme C. , , Guyomarc’h G. , , and Vionnet V. , 2014: Detection of snow fall occurrence during blowing snow events using photoelectric sensors. Cold Reg. Sci. Technol., 106–107, 1121, doi:10.1016/j.coldregions.2014.05.005.

    • Search Google Scholar
    • Export Citation
  • Nishimura, K., , and Nemoto M. , 2005: Blowing snow at Mizuho station, Antarctica. Philos. Trans. Roy. Soc. London, A363, 16471662, doi:10.1098/rsta.2005.1599.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., , and Gray D. M. , 1990: Saltation of snow. Water Resour. Res., 26, 15831594, doi:10.1029/WR026i007p01583.

  • Radok, U., 1977: Snow drift. J. Glaciol., 19, 123139.

  • Sato, T., , Kimura T. , , Ishimaru T. , , and Maruyama T. , 1993: Field test of a new snow-particle counter (SPC) system. Ann. Glaciol., 18, 149154.

    • Search Google Scholar
    • Export Citation
  • Sato, T., , Mochizuki S. , , Kosugi K. , , and Nemoto M. , 2005: Effects of particle shape on mass flux measurement of drifting snow by snow particle counter. J. Japan Soc. Snow Ice, 67, 493502, doi:10.5331/seppyo.67.493.

    • Search Google Scholar
    • Export Citation
  • Savelyev, S. A., , Gordon M. , , Hanesiak J. , , Papakyriakou T. , , and Taylor P. a. , 2006: Blowing snow studies in the Canadian Arctic Shelf Exchange Study, 2003–04. Hydrol. Processes, 20, 817827, doi:10.1002/hyp.6118.

    • Search Google Scholar
    • Export Citation
  • Scarchilli, C., , Frezzotti M. , , Grigioni P. , , De Silvestri L. , , Agnoletto L. , , and Dolci S. , 2010: Extraordinary blowing snow transport events in East Antarctica. Climate Dyn., 34, 11951206, doi:10.1007/s00382-009-0601-0.

    • Search Google Scholar
    • Export Citation
  • Sørensen, M., 1991: An analytic model of wind-blown sand transport. Aeolian Grain Transport 1: Mechanics, O. Barndorff-Nielsen and B. Willetts, Eds., Acta Mechanica Supplementum, Vol. 1, Springer Vienna, 67–81.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sugiura, K., , Ohata T. , , Yang D. , , Sato T. , , and Sato A. , 2009: Application of a snow particle counter to solid precipitation measurements under Arctic conditions. Cold Reg. Sci. Technol., 58, 7783, doi:10.1016/j.coldregions.2009.03.010.

    • Search Google Scholar
    • Export Citation
  • Takeuchi, M., 1980: Vertical profile and horizontal increase of drift-snow transport. J. Glaciol., 26, 481492.

  • Trouvilliez, A., 2013: Observations and Modeling of Blowing Snow in Antarctica (in French). Ph.D. dissertation, University of Grenoble, 162 pp.

  • Trouvilliez, A., and et al. , 2014: A novel experimental study of aeolian snow transport in Adelie Land (Antarctica). Cold Reg. Sci. Technol., 108, 125138, doi:10.1016/j.coldregions.2014.09.005.

    • Search Google Scholar
    • Export Citation
  • Tüg, H., 1988: A pulse-counting technique for the measurement of drifting snow. Ann. Glaciol., 11, 184186.

  • Vionnet, V., , Guyomarc’h G. , , Naaim-Bouvet F. , , Martin É. , , Durand Y. , , Bellot H. , , Bel C. , , and Puglièse P. , 2013: Occurrence of blowing snow events at an alpine site over a 10-year period: Observations and modelling. Adv. Water Resour., 55, 5363, doi:10.1016/j.advwatres.2012.05.004.

    • Search Google Scholar
    • Export Citation
  • Wendler, G., 1989: Measuring blowing snow with a photo-electric particle counter at Pole Station, Antarctica. Polarforschung, 59, 916.

    • Search Google Scholar
    • Export Citation
  • Williamson, C. H. K., 1996: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech., 28, 477539, doi:10.1146/annurev.fl.28.010196.002401.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 4
PDF Downloads 68 68 1

Evaluation of the FlowCapt Acoustic Sensor for the Aeolian Transport of Snow

View More View Less
  • 1 LGGE, UMR 5183, CNRS, and UR ETNA, Irstea, Saint-Martin-d'Hères, and DTecEMF, Cerema, LGCE, Plouzané, and Université Grenoble Alpes, Grenoble, France
  • | 2 UR ETNA, Irstea, Saint-Martin-d'Hères, and Université Grenoble Alpes, Grenoble, France
  • | 3 LGGE, UMR 5183, CNRS, Saint-Martin d'Hères, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

FlowCapt acoustic sensors, designed for measuring the aeolian transport of snow fluxes, are compared to the snow particle counter S7optical sensor, considered herein as the reference. They were compared in the French Alps at the Lac Blanc Pass, where a bench test for the aeolian transport of snow was set up. The two existing generations of FlowCapt are compared. Both seem to be good detectors for the aeolian transport of snow, especially for transport events with a flux above 1 g m−2 s−1. The second-generation FlowCapt is also compared in terms of quantification. The aeolian snow mass fluxes and snow quantity transported recorded by the second-generation FlowCapt are close to the integrative snow particle counter S7 fluxes for an event without precipitation, but they are underestimated when an event with precipitation is considered. When the winter season is considered, for integrative snow particle counter S7 fluxes above 20 g m−2 s−1, the second-generation FlowCapt fluxes are underestimated, regardless of precipitation. In conclusion, both generations of FlowCapt can be used as a drifting snow detector and the second generation can record an underestimation of the quantity of snow transported at one location: over the winter season, the quantity of snow transported recorded by the SPC is between 4 and 6 times greater than the quantity recorded by the second-generation FlowCapt.

Denotes Open Access content.

Corresponding author address: Alexandre Trouvilliez, DTecEMF, Cerema, Technopôle Brest Iroise BP 5, 155 Rue Pierre Bouguer, 29280 Plouzané, France. E-mail: alexandre.trouvilliez@cerema.fr

Abstract

FlowCapt acoustic sensors, designed for measuring the aeolian transport of snow fluxes, are compared to the snow particle counter S7optical sensor, considered herein as the reference. They were compared in the French Alps at the Lac Blanc Pass, where a bench test for the aeolian transport of snow was set up. The two existing generations of FlowCapt are compared. Both seem to be good detectors for the aeolian transport of snow, especially for transport events with a flux above 1 g m−2 s−1. The second-generation FlowCapt is also compared in terms of quantification. The aeolian snow mass fluxes and snow quantity transported recorded by the second-generation FlowCapt are close to the integrative snow particle counter S7 fluxes for an event without precipitation, but they are underestimated when an event with precipitation is considered. When the winter season is considered, for integrative snow particle counter S7 fluxes above 20 g m−2 s−1, the second-generation FlowCapt fluxes are underestimated, regardless of precipitation. In conclusion, both generations of FlowCapt can be used as a drifting snow detector and the second generation can record an underestimation of the quantity of snow transported at one location: over the winter season, the quantity of snow transported recorded by the SPC is between 4 and 6 times greater than the quantity recorded by the second-generation FlowCapt.

Denotes Open Access content.

Corresponding author address: Alexandre Trouvilliez, DTecEMF, Cerema, Technopôle Brest Iroise BP 5, 155 Rue Pierre Bouguer, 29280 Plouzané, France. E-mail: alexandre.trouvilliez@cerema.fr
Save