Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data

A. Molod NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by A. Molod in
Current site
Google Scholar
PubMed
Close
,
H. Salmun Hunter College of the City University of New York, New York, New York

Search for other papers by H. Salmun in
Current site
Google Scholar
PubMed
Close
, and
M. Dempsey Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York

Search for other papers by M. Dempsey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear-sky conditions, summertime averaged hourly time series of PBL heights compare well with Richardson number–based estimates at the few NPN stations with hourly temperature measurements. Comparisons with estimates based on clear-sky reanalysis show that the wind profiler (WP) PBL heights are lower by approximately 250–500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy-sky conditions, and are generally comparable to the Richardson number–based PBL heights and higher than the reanalysis PBL heights. WP PBL heights have a smaller clear–cloudy condition difference than either of the other two. The algorithm presented here is shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

Additional affiliation: Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland.

Additional affiliation: Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York.

Corresponding author address: Andrea Molod, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: andrea.molod@nasa.gov

Abstract

An algorithm was developed to estimate planetary boundary layer (PBL) heights from hourly archived wind profiler data from the NOAA Profiler Network (NPN) sites located throughout the central United States. Unlike previous studies, the present algorithm has been applied to a long record of publicly available wind profiler signal backscatter data. Under clear-sky conditions, summertime averaged hourly time series of PBL heights compare well with Richardson number–based estimates at the few NPN stations with hourly temperature measurements. Comparisons with estimates based on clear-sky reanalysis show that the wind profiler (WP) PBL heights are lower by approximately 250–500 m. The geographical distribution of daily maximum PBL heights corresponds well with the expected distribution based on patterns of surface temperature and soil moisture. Wind profiler PBL heights were also estimated under mostly cloudy-sky conditions, and are generally comparable to the Richardson number–based PBL heights and higher than the reanalysis PBL heights. WP PBL heights have a smaller clear–cloudy condition difference than either of the other two. The algorithm presented here is shown to provide a reliable summertime climatology of daytime hourly PBL heights throughout the central United States.

Additional affiliation: Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland.

Additional affiliation: Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York.

Corresponding author address: Andrea Molod, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771. E-mail: andrea.molod@nasa.gov
Save
  • Angevine, W. M., White A. B. , and Avery S. K. , 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteor., 68, 375385, doi:10.1007/BF00706797.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., Grimsdell A. W. , Hartten L. M. , and Delany A. C. , 1998: The Flatland boundary layer experiments. Bull. Amer. Meteor. Soc., 79, 499431, doi:10.1175/1520-0477(1998)079<0419:TFBLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., Waliser D. E. , Chan S. K. , Li J.-L. , Tian B. , Xie F. , and Mannucci A. J. , 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, doi:10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 39413953, doi:10.1016/S1352-2310(97)00231-8.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., and Wilczak J. M. , 2002: Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Oceanic Technol., 19, 17451758, doi:10.1175/1520-0426(2002)019<1745:CBLDIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., Wilczak J. M. , and White A. B. , 2008: Convective boundary layer depth estimation from wind profilers: Statistical comparison between an automated algorithm and expert estimations. J. Atmos. Oceanic Technol., 25, 13971413, doi:10.1175/2008JTECHA981.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2013: Regional climate and variability of NASA MERRA and recent reanalyses: U.S. summertime precipitation and temperature. J. Appl. Meteor. Climatol., 52, 19391951, doi:10.1175/JAMC-D-12-0291.1.

    • Search Google Scholar
    • Export Citation
  • Cohn, A. S., and Angevine W. M. , 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 12331247, doi:10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compton, J. C., Delgado R. , Berkoff T. A. , and Hoff R. M. , 2013: Determination of planetary boundary layer height on short spatial and temporal scales: A demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements. J. Atmos. Oceanic Technol., 30, 15661575, doi:10.1175/JTECH-D-12-00116.1.

    • Search Google Scholar
    • Export Citation
  • Denning, A. S., Takahashi T. , and Friedlingstein P. , 1999: Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Tellus, 51B, 249253, doi:10.1034/j.1600-0889.1999.t01-1-00010.x.

    • Search Google Scholar
    • Export Citation
  • Guo, P., Kuo Y.-H. , Sokolovskiy S. V. , and Lenschow D. H. , 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Search Google Scholar
    • Export Citation
  • Heo, B.-H., Jacoby-Koaly S. , Kim K.-E. , Campistron B. , Benech B. , and Jung E.-S. , 2003: Use of the Doppler spectral width to improve the estimation of the convective boundary layer height from UHF wind profiler observations. J. Atmos. Oceanic Technol., 20, 408424, doi:10.1175/1520-0426(2003)020<0408:UOTDSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jordan, N. S., Hoff R. M. , and Bacmeister J. T. , 2010: Validation of Goddard Earth Observing System‐version 5 MERRA planetary boundary layer heights using CALIPSO. J. Geophys. Res., 115, D24218, doi:10.1029/2009JD013777.

    • Search Google Scholar
    • Export Citation
  • Lammert, A., and Bösenberg J. , 2006: Determination of the convective boundary-layer height with laser remote sensing. Bound.-Layer Meteor., 119, 159170, doi:10.1007/s10546-005-9020-x.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. R., Welton E. J. , Molod A. , and Joseph E. , 2013: Improved boundary layer depth retrievals from MPLNET. J. Geophys. Res. Atmos., 118,98709879, doi:10.1002/jgrd.50570.

    • Search Google Scholar
    • Export Citation
  • Liu, S., and Liang X.-Z. , 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 57905809, doi:10.1175/2010JCLI3552.1.

    • Search Google Scholar
    • Export Citation
  • OFCM, 1998: U.S. wind profilers: A review. Office of the Federal Coordinator for Meteorological Services and Supporting Research Tech. Rep. FCM-R14-1998, 57 pp.

  • McGrath-Spangler, E. L., and Denning A. S. , 2012: Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar. J. Geophys. Res., 117, D15101, doi:10.1029/2012JD017615.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Walker A. W. , Beuschel D. E. , and Roiter M. D. , 1996: International Satellite Cloud Climatology Project (ISCCP): Documentation of new cloud datasets. WMO/TD-737, 115 pp. [Available online at http://isccp.giss.nasa.gov/pub/documents/d-doc.pdf.]

  • Seibert, P., Beyrich F. , Gryning S.-E. , Joffre S. , Rasmussen A. , and Tercier P. , 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 10011027, doi:10.1016/S1352-2310(99)00349-0.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Ao C. O. , and Li K. , 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Search Google Scholar
    • Export Citation
  • Simpson, M., Raman S. , Lundquist J. K. , and Leach M. , 2007: A study of the variation of urban mixed layer heights. Atmos. Environ., 41, 69236930, doi:10.1016/j.atmosenv.2006.08.029.

    • Search Google Scholar
    • Export Citation
  • Singal, S. P., and Goel M. , 1997: Radio acoustic sounding system (RASS) for studying the lower atmosphere. Acoustic Remote Sensing Applications, S. P. Singal, Ed., Lecture Notes in Earth Sciences, Vol. 69, Narosa Publishing House, 142–176.

  • Spangler, T. C., and Dirks R. A. , 1974: Meso-scale variations of the urban mixing height. Bound.-Layer Meteor., 6, 423–441, doi:10.1007/BF02137677.

    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Measurement of humidity. WMO guide to meteorological instruments and methods of observation, WMO-8, Part I, I.4-1–I.4-30. [Available online at www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 932 271 30
PDF Downloads 704 164 9