The Impact of Range-Oversampling Processing on Tornado Velocity Signatures Obtained from WSR-88D Superresolution Data

Sebastián M. Torres Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Sebastián M. Torres in
Current site
Google Scholar
PubMed
Close
and
Christopher D. Curtis Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Christopher D. Curtis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

WSR-88D superresolution data are produced with finer range and azimuth sampling and improved azimuthal resolution as a result of a narrower effective antenna beamwidth. These characteristics afford improved detectability of weaker and more distant tornadoes by providing an enhancement of the tornadic vortex signature, which is characterized by a large low-level azimuthal Doppler velocity difference. The effective-beamwidth reduction in superresolution data is achieved by applying a tapered data window to the samples in the dwell time; thus, it comes at the expense of increased variances for all radar-variable estimates. One way to overcome this detrimental effect is through the use of range oversampling processing, which has the potential to reduce the variance of superresolution data to match that of legacy-resolution data without increasing the acquisition time. However, range-oversampling processing typically broadens the radar range weighting function and thus degrades the range resolution. In this work, simulated Doppler velocities for vortexlike fields are used to quantify the effects of range-oversampling processing on the velocity signature of tornadoes when using WSR-88D superresolution data. The analysis shows that the benefits of range-oversampling processing in terms of improved data quality should outweigh the relatively small degradation to the range resolution and thus contribute to the tornado warning decision process by improving forecaster confidence in the radar data.

Corresponding author address: Sebastián Torres, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: sebastian.torres@noaa.gov

Abstract

WSR-88D superresolution data are produced with finer range and azimuth sampling and improved azimuthal resolution as a result of a narrower effective antenna beamwidth. These characteristics afford improved detectability of weaker and more distant tornadoes by providing an enhancement of the tornadic vortex signature, which is characterized by a large low-level azimuthal Doppler velocity difference. The effective-beamwidth reduction in superresolution data is achieved by applying a tapered data window to the samples in the dwell time; thus, it comes at the expense of increased variances for all radar-variable estimates. One way to overcome this detrimental effect is through the use of range oversampling processing, which has the potential to reduce the variance of superresolution data to match that of legacy-resolution data without increasing the acquisition time. However, range-oversampling processing typically broadens the radar range weighting function and thus degrades the range resolution. In this work, simulated Doppler velocities for vortexlike fields are used to quantify the effects of range-oversampling processing on the velocity signature of tornadoes when using WSR-88D superresolution data. The analysis shows that the benefits of range-oversampling processing in terms of improved data quality should outweigh the relatively small degradation to the range resolution and thus contribute to the tornado warning decision process by improving forecaster confidence in the radar data.

Corresponding author address: Sebastián Torres, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: sebastian.torres@noaa.gov
Save
  • Brown, R. A., and Wood V. T. , 2012: The tornadic vortex signature: An update. Wea. Forecasting, 27, 525530, doi:10.1175/WAF-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Lemon L. R. , and Burgess D. W. , 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2938, doi:10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Wood V. T. , and Sirmans D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771, doi:10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Flickinger B. A. , Forren E. , Schultz D. M. , Sirmans D. , Spencer P. L. , Wood V. T. , and Ziegler C. L. , 2005: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 314, doi:10.1175/WAF-832.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, J. M., 1948: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 171199, doi:10.1016/S0065-2156(08)70100-5.

    • Search Google Scholar
    • Export Citation
  • Capsoni, C., and D’Amico M. , 1998: A physically based radar simulator. J. Atmos. Oceanic Technol., 15, 593598, doi:10.1175/1520-0426(1998)015<0593:APBRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., Palmer R. D. , and Xue M. , 2008: A time series weather radar simulator based on high-resolution atmospheric models. J. Atmos. Oceanic Technol., 25, 230243, doi:10.1175/2007JTECHA923.1.

    • Search Google Scholar
    • Export Citation
  • Curtis, C., and Torres S. , 2011: Adaptive range oversampling to achieve faster scanning on the National Weather Radar Testbed phased-array radar. J. Atmos. Oceanic Technol., 28, 15811597, doi:10.1175/JTECH-D-10-05042.1.

    • Search Google Scholar
    • Export Citation
  • Curtis, C., and Torres S. , 2014: Adaptive range oversampling to improve estimates of polarimetric variables on weather radars. J. Atmos. Oceanic Technol., 31, 18531866, doi:10.1175/JTECH-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2nd ed. E. Kessler, Ed., University of Oklahoma Press, 197–236.

  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • LaDue, J., Spannagle C. , Holtz V. , and Torres S. , 2010: The impact of WSR-88D super-resolution data in low-level mesocyclone evaluation. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P9.8. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176242.htm.]

  • May, R., Biggerstaff M. I. , and Xue M. , 2007: A Doppler radar simulator with an application to the detectability of tornadic signatures. J. Atmos. Oceanic Technol., 24, 19731996, doi:10.1175/2007JTECHA882.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., Vasiloff S. V. , Stumpf G. J. , Witt A. , Eilts M. D. , Johnson J. T. , and Thomas K. W. , 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, doi:10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2015a: Distance learning operations course: Topic 5; Tornadic vortex signature. NOAA/Warning Decision Training Branch. [Available online at http://www.wdtb.noaa.gov/courses/dloc/topic5/lesson19/player.html.]

  • NOAA, 2015b: Distance learning operations course: Topic 7; Applied performance drills: Identify a TVS or TS. NOAA/Warning Decision Training Branch. [Available online at http://www.wdtb.noaa.gov/courses/dloc/topic7/lesson22/TVS/player.html.]

  • Rott, N., 1958: On the viscous code of a line vortex. Z. Angew. Math. Phys., 9, 543553, doi:10.1007/BF02424773.

  • Torres, S., and Zrnić D. , 2003a: Whitening in range to improve weather radar spectral moment estimates. Part I: Formulation and simulation. J. Atmos. Oceanic Technol., 20, 14331448, doi:10.1175/1520-0426(2003)020<1433:WIRTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres, S., and Zrnić D. , 2003b: Whitening of signals in range to improve estimates of polarimetric variables. J. Atmos. Oceanic Technol., 20, 17761789, doi:10.1175/1520-0426(2003)020<1776:WOSIRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres, S., and Curtis C. , 2006: Design considerations for improved tornado detection using super-resolution data on the NEXRAD network. Proc. Fourth European Conf. on Radar Meteorology and Hydrology (ERAD 2006), Barcelona, Spain, CRAHI, 2.8. [Available online at http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00025.pdf.]

  • Torres, S., and Curtis C. , 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10. [Available online at https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.]

  • Torres, S., and Curtis C. , 2012: The impact of signal processing on the range weighting function for weather radars. J. Atmos. Oceanic Technol., 29, 796806, doi:10.1175/JTECH-D-11-00135.1.

    • Search Google Scholar
    • Export Citation
  • Torres, S., and Curtis C. , 2013: The importance of accurately measuring the range correlation for range oversampling processing. J. Atmos. Oceanic Technol., 30, 261273, doi:10.1175/JTECH-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Torres, S., Curtis C. , and Cruz J. R. , 2004: Pseudowhitening of weather radar signals to improve spectral moment and polarimetric variable estimates at low signal-to-noise ratios. IEEE Trans. Geosci. Remote Sens., 42, 941949, doi:10.1109/TGRS.2004.825579.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and Brown R. A. , 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, doi:10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and Brown R. A. , 2011: Simulated tornadic vortex signatures of tornado-like vortices having one- and two-celled structures. J. Appl. Meteor. Climatol., 50, 23382342, doi:10.1175/JAMC-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Yu, T.-Y., Shapiro A. , Zrnić D. S. , Foster M. P. , Andra D. L. Jr., Doviak R. J. , and Yeary M. B. , 2004: Tornado spectral signature observed by WSR-88D. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 8B.1. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81426.htm.]

  • Zrnić, D. S., and Doviak R. J. , 1975: Velocity spectra of vortices scanned with a pulse-Doppler radar. J. Appl. Meteor., 14, 15311539, doi:10.1175/1520-0450(1975)014<1531:VSOVSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, doi:10.1175/BAMS-88-11-1753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1317 1067 309
PDF Downloads 306 77 10