• Battaglia, A., , Rustemeier E. , , Tokay A. , , Blahak U. , , and Simmer C. , 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344, doi:10.1175/2009JTECHA1332.1.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1977: Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 34, 12931298, doi:10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 24192427, doi:10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boussaton, M. P., , Coquillat S. , , Chauzy S. , , and Gangneron F. , 2004: A new videosonde with a particle charge measurement device for in situ observation of precipitation particles. J. Atmos. Oceanic Technol., 21, 15191531, doi:10.1175/1520-0426(2004)021<1519:ANVWAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., , Zhang G. , , Brandes E. A. , , Schuur T. J. , , Ryzhkov A. , , and Ikeda K. , 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 22382255, doi:10.1175/2008JAMC1732.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Q., , Zhang G. , , Brandes E. A. , , and Schuur T. J. , 2010: Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteor. Climatol., 49, 973990, doi:10.1175/2009JAMC2227.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. I., , and Auer A. H. Jr., 1974: Use of isolated orographic clouds to establish the accuracy of diffusional ice crystal growth equations. Preprints, Conf. on Cloud Physics, Tucson, AZ, Amer. Meteor. Soc., 141–147.

  • Friedrich, K., , Kalina E. A. , , Masters F. J. , , and Lopez C. R. , 2013: Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon. Wea. Rev., 141, 11821203, doi:10.1175/MWR-D-12-00116.1.

    • Search Google Scholar
    • Export Citation
  • Grossklaus, M., , Uhlig K. , , and Hasse L. , 1998: An optical disdrometer for use in high wind speeds. J. Atmos. Oceanic Technol., 15, 10511059, doi:10.1175/1520-0426(1998)015<1051:AODFUI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., , and Kinzer G. D. , 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, doi:10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , Krajewski W. F. , , and Kruger A. , 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166, doi:10.1061/(ASCE)1084-0699(2001)6:2(159).

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , Schmitt C. , , and Bansemer A. , 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and Willis P. T. , 1982: A Z–R relationship for hurricanes. J. Appl. Meteor., 21, 356366, doi:10.1175/1520-0450(1982)021<0356:AZRRFH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., , and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602617, doi:10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, X. C., , Gao T. C. , , and Liu L. , 2014: A video precipitation sensor for imaging and velocimetry of hydrometeors. Atmos. Meas. Tech., 7, 20372046, doi:10.5194/amt-7-2037-2014.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., , and Joss J. , 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, doi:10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., , and Blahak U. , 2001: Estimation of the equivalent radar reflectivity factor from measured snow size spectra. J. Appl. Meteor., 40, 843849, doi:10.1175/1520-0450(2001)040<0843:EOTERR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magono, C., , and Lee C. E. , 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321362.

    • Search Google Scholar
    • Export Citation
  • Mahlke, H., , Corsmeier U. , , Kottmeier C. , , and Löffler-Mang M. , 2008: The new balloon-borne disdrometer ‘Flying Parsivel.’ Seventh Convective and Orographically Induced Precipitation Study (COPS) Workshop, Strasbourg, France, Karlsruhe Institute of Technology, C8. [Available online at https://www.imk-tro.kit.edu/download/Poster_Flying_Parsivel.pdf.]

  • McFarquhar, G. M., , Timlin M. S. , , Rauber R. M. , , Jewett B. F. , , Grim J. A. , , and Jorgensen D. P. , 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., , and Heymsfield A. J. , 1997: A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis. J. Atmos. Oceanic Technol., 14, 753768, doi:10.1175/1520-0426(1997)014<0753:ABBCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., , and Matsuo T. , 1990: Development of the hydrometeor videosonde. J. Atmos. Oceanic Technol., 7, 613620, doi:10.1175/1520-0426(1990)007<0613:DOTHV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., , Matsuo T. , , Nakayama T. , , and Tanaka T. , 1987: Development of cloud particle video sonde. J. Meteor. Soc. Japan, 65, 803809.

    • Search Google Scholar
    • Export Citation
  • Norment, H. G., 1988: Three-dimensional trajectory analysis of two drop sizing instruments: PMS* OAP and PMS* FSSP. J. Atmos. Oceanic Technol., 5, 743756, doi:10.1175/1520-0426(1988)005<0743:TDTAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ogliore, R., , Floss C. , , Stadermann F. , , Kearsley A. , , Leitner J. , , Stroud R. , , and Westphal A. , 2012: Automated searching of stardust interstellar foils. Meteorit. Planet. Sci., 47, 729736, doi:10.1111/j.1945-5100.2011.01325.x.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and Klett J. D. , 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Press, 954 pp.

  • Rust, W. D., , and Marshall T. C. , 1989: Mobile, high-wind, balloon-launching apparatus. J. Atmos. Oceanic Technol., 6, 215217, doi:10.1175/1520-0426(1989)006<0215:MHWBLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schoenberg Ferrier, B., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., , Ryzhkov A. V. , , Zrnić D. S. , , and Schönhuber M. , 2001: Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J. Appl. Meteor., 40, 10191034, doi:10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, A. M., , McFarquhar G. M. , , Rauber R. M. , , Grim J. A. , , Timlin M. S. , , Jewett B. F. , , and Jorgensen D. P. , 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 11651185, doi:10.1175/2008MWR2504.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1990: Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17, 23812384, doi:10.1029/GL017i013p02381.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 2010: The videosonde system and its use in the study of East Asian monsoon rain. Bull. Amer. Meteor. Soc., 91, 12311246, doi:10.1175/2010BAMS2777.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., , and Atlas D. , 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor., 37, 912923, doi:10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., , Kingsmill D. E. , , Nance L. B. , , and Löffler-Mang M. , 2006: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteor. Climatol., 45, 14501464, doi:10.1175/JAM2406.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 7
PDF Downloads 52 52 4

A Balloonborne Particle Size, Imaging, and Velocity Probe for in Situ Microphysical Measurements

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A balloonborne instrument known as the Particle Size, Image, and Velocity (PASIV) probe has been developed at the National Severe Storms Laboratory to provide in situ microphysical measurements in storms. These observations represent a critical need of microphysics observations for use in lightning studies, cloud microphysics simulations, and dual-polarization radar validation. The instrument weighs approximately 2.72 kg and consists of a high-definition (HD) video camera, a camera viewing chamber, and a modified Particle Size and Velocity (Parsivel) laser disdrometer mounted above the camera viewing chamber. Precipitation particles fall through the Parsivel sampling area and then into the camera viewing chamber, effectively allowing both devices to sample the same particles. The data are collected on board for analysis after retrieval. Taken together, these two instruments are capable of providing a vertical profile of the size, shape, velocity, orientation, and composition of particles along the balloon path within severe weather.

The PASIV probe has been deployed across several types of weather environments, including thunderstorms, supercells, and winter storms. Initial results from two cases in the Deep Convective Clouds and Chemistry Experiment are shown that demonstrate the ability of the instrument to obtain high-spatiotemporal- resolution observations of the particle size distributions within convection.

Corresponding author address: Sean Waugh, Warning Research and Development Division, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: sean.waugh@noaa.gov

Abstract

A balloonborne instrument known as the Particle Size, Image, and Velocity (PASIV) probe has been developed at the National Severe Storms Laboratory to provide in situ microphysical measurements in storms. These observations represent a critical need of microphysics observations for use in lightning studies, cloud microphysics simulations, and dual-polarization radar validation. The instrument weighs approximately 2.72 kg and consists of a high-definition (HD) video camera, a camera viewing chamber, and a modified Particle Size and Velocity (Parsivel) laser disdrometer mounted above the camera viewing chamber. Precipitation particles fall through the Parsivel sampling area and then into the camera viewing chamber, effectively allowing both devices to sample the same particles. The data are collected on board for analysis after retrieval. Taken together, these two instruments are capable of providing a vertical profile of the size, shape, velocity, orientation, and composition of particles along the balloon path within severe weather.

The PASIV probe has been deployed across several types of weather environments, including thunderstorms, supercells, and winter storms. Initial results from two cases in the Deep Convective Clouds and Chemistry Experiment are shown that demonstrate the ability of the instrument to obtain high-spatiotemporal- resolution observations of the particle size distributions within convection.

Corresponding author address: Sean Waugh, Warning Research and Development Division, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: sean.waugh@noaa.gov
Save