Wavelet Compression Technique for High-Resolution Global Model Data on an Icosahedral Grid

Ning Wang NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Boulder, Colorado

Search for other papers by Ning Wang in
Current site
Google Scholar
PubMed
Close
,
Jian-Wen Bao NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Boulder, Colorado

Search for other papers by Jian-Wen Bao in
Current site
Google Scholar
PubMed
Close
,
Jin-Luen Lee NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Boulder, Colorado

Search for other papers by Jin-Luen Lee in
Current site
Google Scholar
PubMed
Close
,
Fanthune Moeng NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Boulder, Colorado

Search for other papers by Fanthune Moeng in
Current site
Google Scholar
PubMed
Close
, and
Cliff Matsumoto NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Boulder, Colorado

Search for other papers by Cliff Matsumoto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Modern Earth modeling systems often use high-resolution unstructured grids to discretize their horizontal domains. One of the major challenges in working with these high-resolution models is to efficiently transmit and store large volumes of model data for operational forecasts and for modeling research.

A newly developed compression technique is presented that significantly reduces the size of datasets produced by high-resolution global models that are discretized on an icosahedral grid. The compression technique is based on the wavelet transform together with a grid rearrangement algorithm and precision-controlled quantization technology. The grid rearrangement algorithm converts an icosahedral grid to a set of 10 rhombus grids that retain the spatial correlation of model data so that a three-dimensional wavelet transform can be effectively applied. The precision-controlled quantization scheme guarantees specified precision of compressed datasets.

The technique is applied to the output of a global weather prediction model, the Flow-Following, Finite-Volume Icosahedral Model (FIM) developed by NOAA’s Earth System Research Laboratory. Experiments show that model data at 30-km resolution can be compressed up to 50:1 without noticeable visual differences; at specified precision requirements, the proposed compression technique achieves better compression compared to a state-of-the-art compression format [Gridded Binary (GRIB) with JPEG 2000 packing option]. In addition, model forecasts initialized with original and compressed initial conditions are compared and assessed. The assessment indicates that it is promising to use the technique to compress model data for those applications demanding high fidelity of compressed datasets.

Corresponding author address: Ning Wang, NOAA/ESRL, R/GSD1, 325 Broadway, Boulder, CO 80305. E-mail: ning.wang@noaa.gov

Abstract

Modern Earth modeling systems often use high-resolution unstructured grids to discretize their horizontal domains. One of the major challenges in working with these high-resolution models is to efficiently transmit and store large volumes of model data for operational forecasts and for modeling research.

A newly developed compression technique is presented that significantly reduces the size of datasets produced by high-resolution global models that are discretized on an icosahedral grid. The compression technique is based on the wavelet transform together with a grid rearrangement algorithm and precision-controlled quantization technology. The grid rearrangement algorithm converts an icosahedral grid to a set of 10 rhombus grids that retain the spatial correlation of model data so that a three-dimensional wavelet transform can be effectively applied. The precision-controlled quantization scheme guarantees specified precision of compressed datasets.

The technique is applied to the output of a global weather prediction model, the Flow-Following, Finite-Volume Icosahedral Model (FIM) developed by NOAA’s Earth System Research Laboratory. Experiments show that model data at 30-km resolution can be compressed up to 50:1 without noticeable visual differences; at specified precision requirements, the proposed compression technique achieves better compression compared to a state-of-the-art compression format [Gridded Binary (GRIB) with JPEG 2000 packing option]. In addition, model forecasts initialized with original and compressed initial conditions are compared and assessed. The assessment indicates that it is promising to use the technique to compress model data for those applications demanding high fidelity of compressed datasets.

Corresponding author address: Ning Wang, NOAA/ESRL, R/GSD1, 325 Broadway, Boulder, CO 80305. E-mail: ning.wang@noaa.gov
Save
  • Ansari, R., Memon N. , and Ceran E. , 1998: Near-lossless image compression techniques. J. Electron. Imaging, 7, 486494, doi:10.1117/1.482591.

    • Search Google Scholar
    • Export Citation
  • Antonini, M., Barlaud M. , Mathieu P. , and Daubechies I. , 1992: Image coding using the wavelet transform. IEEE Trans. Image Process., 1, 205220, doi:10.1109/83.136597.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, J. R., and Frederickson P. O. , 1985: Icosahedral discretization of the two-sphere. SIAM J. Numer. Anal., 22, 11071115, doi:10.1137/0722066.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., Benjamin S. , Lee J. , and MacDonald A. E. , 2010: On the use of an adaptive, hybrid-isentropic vertical coordinate in global atmospheric modeling. Mon. Wea. Rev., 138, 21882210, doi:10.1175/2009MWR3103.1.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., and Coauthors, 2015: A vertically flow-following icosahedral grid model for medium-range and seasonal prediction. Part I: Model description. Mon. Wea. Rev.,143, 2386–2403, doi:10.1175/MWR-D-14-00300.1.

  • Cohen, A., Daubechies I. , and Feauveau J.-C. , 1992: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math., 45,485560, doi:10.1002/cpa.3160450502.

    • Search Google Scholar
    • Export Citation
  • Daubechies, I., 1992: Ten Lectures on Wavelets.SIAM, 357 pp.

  • de Saint-Martin, F. M., Siohan P. , and Cohen A. , 1999: Biorthogonal filterbanks and energy preservation property in image compression. IEEE Trans. Image Process., 8, 168178, doi:10.1109/83.743852.

    • Search Google Scholar
    • Export Citation
  • DeVore, R., Jawerth B. , and Lucier B. J. , 1992: Image compression through wavelet transform coding. IEEE Trans. Inf. Theory, 38, 719746, doi:10.1109/18.119733.

    • Search Google Scholar
    • Export Citation
  • Dey, C. H., 2007: Guide to the WMO table driven code form used for the representation and exchange of regularly spaced data in binary form: FM 92 GRIB edition 2. WMO Tech. Rep., 98 pp. [Available online at http://www.wmo.int/pages/prog/www/WMOCodes/Guides/GRIB/GRIB2_062006.pdf.]

  • Donoho, D. L., 1993: Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comput. Harmonic Anal., 1, 100115, doi:10.1006/acha.1993.1008.

    • Search Google Scholar
    • Export Citation
  • Du, Q., and Ju L. , 2005: Finite volume methods on spheres and spherical centroidal Voronoi meshes. SIAM J. Numer. Anal., 43, 16731692, doi:10.1137/S0036142903425410.

    • Search Google Scholar
    • Export Citation
  • Finkel, R. A., and Bentley J. L. , 1974: Quad trees: A data structure for retrieval on composite keys. Acta Inf., 4, 19, doi:10.1007/BF00288933.

    • Search Google Scholar
    • Export Citation
  • Heikes, R., and Randall D. , 1995: Numerical integration of shallow-water equations on twisted icosahedral grid. Part II: A detailed description of grid and an analysis of numerical accuracy. Mon. Wea. Rev., 123, 18811887, doi:10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Karray, L., Duhamel P. , and Rioul O. , 1998: Image coding with an norm and confidence interval criteria. IEEE Trans. Image Process., 7, 621631, doi:10.1109/83.668016.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-L., and MacDonald A. E. , 2009: A finite-volume icosahedral shallow-water model on a local coordinate. Mon. Wea. Rev., 137, 14221437, doi:10.1175/2008MWR2639.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-L., Bleck R. , and MacDonald A. E. , 2010: A multistep flux-corrected transport scheme. J. Comput. Phys., 229, 92849298, doi:10.1016/j.jcp.2010.08.039.

    • Search Google Scholar
    • Export Citation
  • Lessig, C., and Fiume E. , 2008: SOHO: Orthogonal and symmetric Haar wavelets on the sphere. ACM Trans. Graphics,27 (1), Article 4, doi:10.1145/1330511.1330515.

  • Lucero, A., Cabrera S. , Aguirre A. , Argaez M. , and Vidal E. , 2004: Comparison of bit allocation methods for compressing three-dimensional meteorological data after applying KLT. 2004 IEEE Int. Geoscience and Remote Sensing Symp., Vol. 4, IEEE, 25142517.

  • Majewski, D., Liermann D. , Prohl P. , Ritter B. , Buchhold M. , Hanisch T. , Paul G. , and Wergen W. , 2002: The operational global icosahedral–hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319338, doi:10.1175/1520-0493(2002)130<0319:Togihg>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mallat, S. G., 1989: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674693, doi:10.1109/34.192463.

    • Search Google Scholar
    • Export Citation
  • Marpe, D., Blattermann G. , Ricke J. , and Maab P. , 2000: A two-layered wavelet-based algorithm for efficient lossless and lossy image compression. IEEE Trans. Circuits Syst. Video Technol., 10, 10941102, doi:10.1109/76.875514.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and Lin S.-J. , 2009: A finite-volume dynamical core on the cubed-sphere grid. Numerical Modeling of Space Plasma Flows: ASTRONUM-2008,N. Pogorelov et al., Eds., Astronomical Society of the Pacific Conference Series, Vol. 406, ASP, 268–276.

    • Search Google Scholar
    • Export Citation
  • Said, A., and Pearlman W. A. , 1996: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol., 6, 243250, doi:10.1109/76.499834.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., Matsuno T. , Tomita H. , Miura H. , Nasuno T. , and Iga S. , 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Schröder, P., and Sweldens W. , 1995: Spherical wavelets: Efficiently representing functions on the sphere. SIGGRAPH ’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, S. G. Mair and R. Cook, Eds., ACM, 161–172.

  • Shapiro, J. M., 1993: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process., 41, 34453462, doi:10.1109/78.258085.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Duda M. G. , Fowler L. D. , Park S.-H. , and Ringler T. D. , 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Strang, G., and Nguyen T. , 1998: Wavelets and Filter Banks.Wellesley-Cambridge Press, 520 pp.

  • Sweldens, W., 1997: The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 29, 511546, doi:10.1137/S0036141095289051.

    • Search Google Scholar
    • Export Citation
  • Tian, J., and Wells R. O Jr., 1996: A lossy image codec based on index coding. Proceedings of the IEEE Data Compression Conference (DCC ’96), J. A. Storer, Ed., IEEE, 456.

  • Tomita, H., Tsugawa M. , Satoh M. , and Goto K. , 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comput. Phys., 174, 579613, doi:10.1006/jcph.2001.6897.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., Satoh M. , and Goto K. , 2004: A new dynamical framework of global nonhydrostatic model using the icosahedral grid. Fluid Dyn. Res., 34, 357400, doi:10.1016/j.fluiddyn.2004.03.003.

    • Search Google Scholar
    • Export Citation
  • Topiwala, P. N., Ed., 1998: Wavelet Image and Video Compression.International Series in Engineering and Computer Science, Vol. 450, Springer, 438 pp.

  • Wang, N., and Madine S. , 1998: FX-NET: A Java-based Internet client interface to the WFO-Advanced workstation. Preprints, 14th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 427–429.

  • Wang, N., and Brummer R. , 2003: Experiment of a wavelet-based compression technique with precision control. 19th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Long Beach, CA, Amer. Meteor. Soc., 4.8. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56240.htm.]

  • Wang, N., and Lee J. , 2011: Geometric properties of the icosahedral-hexagonal grid on the two-sphere. SIAM J. Sci. Comput., 33, 25362559, doi:10.1137/090761355.

    • Search Google Scholar
    • Export Citation
  • Yea, S., and Pearlman W. A. , 2006: A wavelet-based two-stage near-lossless coder. Trans. Image Process., 15, 34883500, doi:10.1109/TIP.2006.877525.

    • Search Google Scholar
    • Export Citation
  • Ziv, J., and Lempel A. , 1977: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory, 23, 337343, doi:10.1109/TIT.1977.1055714.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 947 634 123
PDF Downloads 298 50 7