Assessment of the Upper-Ocean Observing System in the Equatorial Pacific: The Role of Argo in Resolving Intraseasonal to Interannual Variability

Florent Gasparin Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Florent Gasparin in
Current site
Google Scholar
PubMed
Close
,
Dean Roemmich Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Dean Roemmich in
Current site
Google Scholar
PubMed
Close
,
John Gilson Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by John Gilson in
Current site
Google Scholar
PubMed
Close
, and
Bruce Cornuelle Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Bruce Cornuelle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using more than 10 years of Argo temperature and salinity profiles (2004–14), a new optimal interpolation (OI) of the upper ocean in the equatorial Pacific is presented. Following Roemmich and Gilson’s procedures, which were formulated for describing monthly large-scale anomalies, here every 5 days anomaly fields are constructed with improvements in the OI spatial covariance function and by including the time domain. The comparison of Argo maps with independent observations, from the TAO/TRITON array, and with satellite sea surface height (SSH), demonstrates that Argo is able to represent around 70%–80% of the variance at intraseasonal time scales (periods of 20–100 days) and more than 90% of the variance for the seasonal-to-longer-term variability. The RMS difference between Argo and TAO/TRITON temperatures is lower than 1°C and is around 1.5 cm when the Argo steric height is compared to SSH. This study also assesses the efficacy of different observing system components and combinations, such as SSH, TAO/TRITON, and Argo, for estimating subsurface temperature. Salinity investigations demonstrate its critical importance for density near the surface in the western Pacific. Objective error estimates from the OI are used to evaluate different sampling strategies, such as the recent deployment of 41 Argo floats along the Pacific equator. Argo’s high spatial resolution compared with that of the moored array makes it better suited for studying spatial patterns of variability and propagation on intraseasonal and longer periods, but it is less well suited for studying variability on periods shorter than 20 days at point locations. This work is a step toward better utilization of existing datasets, including Argo, and toward redesigning the Tropical Pacific Observing System.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-14-00218.s1.

Corresponding author address: Florent Gasparin, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0230, La Jolla, CA 92093-0230. E-mail: fgasparin@ucsd.edu

Abstract

Using more than 10 years of Argo temperature and salinity profiles (2004–14), a new optimal interpolation (OI) of the upper ocean in the equatorial Pacific is presented. Following Roemmich and Gilson’s procedures, which were formulated for describing monthly large-scale anomalies, here every 5 days anomaly fields are constructed with improvements in the OI spatial covariance function and by including the time domain. The comparison of Argo maps with independent observations, from the TAO/TRITON array, and with satellite sea surface height (SSH), demonstrates that Argo is able to represent around 70%–80% of the variance at intraseasonal time scales (periods of 20–100 days) and more than 90% of the variance for the seasonal-to-longer-term variability. The RMS difference between Argo and TAO/TRITON temperatures is lower than 1°C and is around 1.5 cm when the Argo steric height is compared to SSH. This study also assesses the efficacy of different observing system components and combinations, such as SSH, TAO/TRITON, and Argo, for estimating subsurface temperature. Salinity investigations demonstrate its critical importance for density near the surface in the western Pacific. Objective error estimates from the OI are used to evaluate different sampling strategies, such as the recent deployment of 41 Argo floats along the Pacific equator. Argo’s high spatial resolution compared with that of the moored array makes it better suited for studying spatial patterns of variability and propagation on intraseasonal and longer periods, but it is less well suited for studying variability on periods shorter than 20 days at point locations. This work is a step toward better utilization of existing datasets, including Argo, and toward redesigning the Tropical Pacific Observing System.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-14-00218.s1.

Corresponding author address: Florent Gasparin, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, Mail Code 0230, La Jolla, CA 92093-0230. E-mail: fgasparin@ucsd.edu
Save
  • Ando, K., Matsumoto T. , Nagahama T. , Ueki I. , Takatsuki Y. , and Kuroda Y. , 2005: Drift characteristics of a moored conductivity–temperature–depth sensor and correction of salinity data. J. Atmos. Oceanic Technol., 22, 282291, doi:10.1175/JTECH1704.1.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M., and Anderson D. , 2009: Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., Pacanowski R. C. , George S. , Philander H. , and Fedorov A. V. , 2004: The thermal structure of the upper ocean. J. Phys. Oceanogr., 34, 888902, doi:10.1175/1520-0485(2004)034<0888:TTSOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., Davis R. E. , and Fandry C. B. , 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • CNES, 2014: SSALTO/DUACS multimission altimeter products. AVISO, accessed September 2014. [Available online at www.aviso.altimetry.fr/duacs/.]

  • Cravatte, S., Picaut J. , and Eldin G. , 2003: Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J. Geophys. Res., 108, 3266, doi:10.1029/2002JC001511.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683–707, doi:10.1175/JPO2702.1.

    • Search Google Scholar
    • Export Citation
  • Dewitte, B., Reverdin G. , and Maes C. , 1999: Vertical structure of an OGCM simulation of the equatorial Pacific Ocean in 1985–94. J. Phys. Oceanogr., 29, 15421570, doi:10.1175/1520-0485(1999)029<1542:VSOAOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dhomps, A.-L., Guinehut S. , Le Traon P.-Y. , and Larnicol G. , 2011: A global comparison of Argo and satellite altimetry observations. Ocean Sci., 7, 175183, doi:10.5194/os-7-175-2011.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., Le Traon P.-Y. , and Reverdin G. , 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 19 477–19 498, doi:10.1029/2000JC900063.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., Yu L. , and Tziperman E. , 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, doi:10.1175/JCLI3588.1.

    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., and Coauthors, 2010: ARGO—A decade of progress. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.32.

  • Gebbie, G., Eisenman I. , Wittenberg A. , and Tziperman E. , 2007: Westerly wind burst modulation by sea surface temperature as an intrinsic part of ENSO dynamics. J. Atmos. Sci., 64, 32813295, doi:10.1175/JAS4029.1.

    • Search Google Scholar
    • Export Citation
  • Guinehut, S., Le Traon P.-Y. , Larnicol G. , and Philipps S. , 2004: Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—A first approach based on simulated observations. J. Mar. Syst., 46, 8598, doi:10.1016/j.jmarsys.2003.11.022.

    • Search Google Scholar
    • Export Citation
  • Guinehut, S., Dhomps A.-L. , Larnicol G. , and Le Traon P.-Y. , 2012: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci., 8, 845857, doi:10.5194/os-8-845-2012.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and Vecchi G. A. , 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, doi:10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and Chiodi A. M. , 2009: Pre- and post-1997/98 westerly wind events and equatorial Pacific cold tongue warming. J. Climate, 22, 568581, doi:10.1175/2008JCLI2270.1.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., Mangum L. J. , Picaut J. , Sumi A. , and Takeuchi K. , 1991: TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72, 339347, doi:10.1175/1520-0477(1991)072<0339:TTAMAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2006: The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 181217, doi:10.1016/j.pocean.2006.03.009.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and McCreary J. P. , 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23, 11921207, doi:10.1175/1520-0485(1993)023<1192:TAWDRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and Kleeman R. , 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, doi:10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., McPhaden M. J. , and Weickmann K. M. , 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631, doi:10.1029/95JC00382.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., Spillane M. C. , McPhaden M. J. , and Harrison D. E. , 1996: Scales of variability in the equatorial Pacific inferred form Tropical Atmosphere–Ocean buoy array. J. Climate, 9, 29993024, doi:10.1175/1520-0442(1996)009<2999:SOVITE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., and McPhaden M. , 2002: Intraseasonal variations in the upper equatorial Pacific Ocean prior to and during the 1997–98 El Niño. J. Phys. Oceanogr., 32, 11331149, doi:10.1175/1520-0485(2002)032<1133:IVITUE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T., Lagerloef G. , Gierach M. M. , Kao H.-Y. , Yueh S. , and Dohan K. , 2012: Aquarius reveals salinity structure of tropical instability waves. Geophys. Res. Lett., 39, L12610, doi:10.1029/2012GL052232.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., Boulanger J.-P. , Menkes C. , Madec G. , Delecluse P. , Guilyardi E. , and Slingo J. , 2003: The March 1997 westerly wind event and the onset of the 1997/98 El Nino: Understanding the role of the atmospheric response. J. Climate, 16, 33303343, doi:10.1175/1520-0442(2003)016<3330:TMWWEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp. [Available online at https://www.nodc.noaa.gov/OC5/woa13/.]

  • Luther, D. S., Harrison D. E. , and Knox R. A. , 1983: Zonal winds in the central equatorial Pacific and El Niño. Science, 222, 327330, doi:10.1126/science.222.4621.327.

    • Search Google Scholar
    • Export Citation
  • Maes, C., McPhaden M. J. , and Behringer D. , 2002: Signatures of salinity variability in tropical Pacific Ocean dynamic height anomalies. J. Geophys. Res., 107, 8012, doi:10.1029/2000JC000737.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., Singhruck P. , and Heywood K. J. , 2007: Deep ocean impact of a Madden-Julian Oscillation observed by Argo floats. Science, 318, 17651769, doi:10.1126/science.1147312.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., Singhruck P. , and Heywood K. J. , 2010: Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats. Climate Dyn., 35, 11491168, doi:10.1007/s00382-009-0631-7.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Nino. Science, 283, 950954, doi:10.1126/science.283.5404.950.

  • McPhaden, M. J., 2002: Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J. Climate, 15, 26322647, doi:10.1175/1520-0442(2002)015<2632:MLTBOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., Phillips H. , Smith N. , and Sprintall J. , 1991: Space and time scales for optimal interpolation of temperature—Tropical Pacific Ocean. Prog. Oceanogr., 28, 189218, doi:10.1016/0079-6611(91)90008-A.

    • Search Google Scholar
    • Export Citation
  • Milburn, H., McLain P. , and Meinig C. , 1996: ATLAS buoy-reengineered for the next decade. OCEANS ’96 MTS/IEEE: Conference Proceedings; Prospects for the 21st Century, Vol. 2, IEEE, 698702, doi:10.1109/OCEANS.1996.568312.

  • NOAA/PMEL, 2014: Tropical Atmosphere Ocean project data. Accessed September 2014. [Available online at www.pmel.noaa.gov/tao/.]

  • Rebert, J. P., Donguy J. R. , Eldin G. , and Wyrtki K. , 1985: Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J. Geophys. Res., 90, 11 71911 725, doi:10.1029/JC090iC06p11719.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., Dunn J. R. , and Wilkin J. L. , 2002: Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, doi:10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Gilson J. , 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 1998: The design and implementation of Argo: A global array of profiling floats. International CLIVAR Project Office Rep. 21, 35 pp. [Available online at http://www.argo.ucsd.edu/argo-design.pdf.]

  • Roundy, P. E., and Frank W. M. , 2004: Effects of low-frequency wave interactions on intraseasonal oscillations. J. Atmos. Sci., 61, 30253040, doi:10.1175/JAS-3348.1.

    • Search Google Scholar
    • Export Citation
  • Smith, G. C., and Haines K. , 2009: Evaluation of the S(T) assimilation method with the Argo dataset. Quart. J. Roy. Meteor. Soc., 135, 739756, doi:10.1002/qj.395.

    • Search Google Scholar
    • Export Citation
  • Ueki, I., Ando K. , Kuroda Y. , and Kutsuwada K. , 2002: Salinity variation and its effect on dynamic height along the 156°E in the Pacific warm pool. Geophys. Res. Lett., 29, 34-1–34-4, doi:10.1029/2001GL013993.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Harrison D. E. , 2000: Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J. Climate, 13, 18141830, doi:10.1175/1520-0442(2000)013<1814:TPSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N. T., Ponte R. M. , and Stammer D. , 2007: Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys. Res. Lett., 34, L03608, doi:10.1029/2006GL028588.

    • Search Google Scholar
    • Export Citation
  • Walker, A. E., and Wilkin J. L. , 1998: Optimal averaging of NOAA/NASA Pathfinder satellite sea surface temperature data. J. Geophys. Res., 103, 12 86912 883, doi:10.1029/98JC00455.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., Bowen M. M. , and Emery W. J. , 2002: Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data. Ocean Dyn., 52, 95103, doi:10.1007/s10236-001-0011-2.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1985: Water displacements in the Pacific and the genesis of El Nino cycles. J. Geophys. Res., 90, 7129–7132, doi:10.1029/JC090iC04p07129.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 83 6
PDF Downloads 296 46 3