Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction

Robert Atlas * NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Robert Atlas in
Current site
Google Scholar
PubMed
Close
,
Ross N. Hoffman Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Ross N. Hoffman in
Current site
Google Scholar
PubMed
Close
,
Zaizhong Ma Cooperative Institute for Climate and Satellites, University of Maryland, College Park, College Park, Maryland

Search for other papers by Zaizhong Ma in
Current site
Google Scholar
PubMed
Close
,
G. David Emmitt Simpson Weather Associates, Charlottesville, Virginia

Search for other papers by G. David Emmitt in
Current site
Google Scholar
PubMed
Close
,
Sidney A. Wood Jr. Simpson Weather Associates, Charlottesville, Virginia

Search for other papers by Sidney A. Wood Jr. in
Current site
Google Scholar
PubMed
Close
,
Steven Greco Simpson Weather Associates, Charlottesville, Virginia

Search for other papers by Steven Greco in
Current site
Google Scholar
PubMed
Close
,
Sara Tucker Ball Aerospace and Technologies Corp., Boulder, Colorado

Search for other papers by Sara Tucker in
Current site
Google Scholar
PubMed
Close
,
Lisa Bucci Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Lisa Bucci in
Current site
Google Scholar
PubMed
Close
,
Bachir Annane Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Bachir Annane in
Current site
Google Scholar
PubMed
Close
,
R. Michael Hardesty ** NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
, and
Shirley Murillo Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Shirley Murillo in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The potential impact of Doppler wind lidar (DWL) observations from a proposed optical autocovariance wind lidar (OAWL) instrument is quantified in observing system simulation experiments (OSSEs). The OAWL design would provide profiles of useful wind vectors along a ground track to the left of the International Space Station (ISS), which is in a 51.6° inclination low-Earth orbit (LEO). These observations are simulated realistically, accounting for cloud and aerosol distributions inferred from the OSSE nature runs (NRs), and measurement and sampling error sources. The impact of the simulated observations is determined in both global and regional OSSE frameworks. The global OSSE uses the ECMWF T511 NR and the NCEP operational Global Data Assimilation System at T382 resolution. The regional OSSE uses an embedded hurricane NR and the NCEP operational HWRF data assimilation system with outer and inner domains of 9- and 3-km resolution, respectively.

The global OSSE results show improved analyses and forecasts of tropical winds and extratropical geopotential heights. The tropical wind RMSEs are significantly reduced in the analyses and in short-term forecasts. The tropical wind improvement decays as the forecasts lengthen. The regional OSSEs are limited but show some improvements in hurricane track and intensity forecasts.

Denotes Open Access content.

Corresponding author address: Robert Atlas, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: robert.atlas@noaa.gov

Abstract

The potential impact of Doppler wind lidar (DWL) observations from a proposed optical autocovariance wind lidar (OAWL) instrument is quantified in observing system simulation experiments (OSSEs). The OAWL design would provide profiles of useful wind vectors along a ground track to the left of the International Space Station (ISS), which is in a 51.6° inclination low-Earth orbit (LEO). These observations are simulated realistically, accounting for cloud and aerosol distributions inferred from the OSSE nature runs (NRs), and measurement and sampling error sources. The impact of the simulated observations is determined in both global and regional OSSE frameworks. The global OSSE uses the ECMWF T511 NR and the NCEP operational Global Data Assimilation System at T382 resolution. The regional OSSE uses an embedded hurricane NR and the NCEP operational HWRF data assimilation system with outer and inner domains of 9- and 3-km resolution, respectively.

The global OSSE results show improved analyses and forecasts of tropical winds and extratropical geopotential heights. The tropical wind RMSEs are significantly reduced in the analyses and in short-term forecasts. The tropical wind improvement decays as the forecasts lengthen. The regional OSSEs are limited but show some improvements in hurricane track and intensity forecasts.

Denotes Open Access content.

Corresponding author address: Robert Atlas, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: robert.atlas@noaa.gov
Save
  • Aksoy, A., Lorsolo S. , Vukićević T. , Sellwood K. J. , Aberson S. D. , and Zhang F. , 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862, doi:10.1175/MWR-D-11-00212.1.

    • Search Google Scholar
    • Export Citation
  • Andersson, E., and Masutani M. , 2010: Collaboration on observing system simulation experiments (joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 14–16.

  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Riishojgaard L. P. , 2008: Application of OSSEs to observing system design. Remote Sensing System Engineering, P. E. Ardanuy, and J. J. Puschell, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7087), 708707, doi:10.1117/12.795344.

  • Atlas, R., Kalnay E. , Baker W. E. , Susskind J. , Reuter D. , and Halem M. , 1985a: Simulation studies of the impact of future observing systems on weather prediction. Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, QC, Canada, Amer. Meteor. Soc., 145151.

  • Atlas, R., Kalnay E. , and Halem M. , 1985b: Impact of satellite temperature soundings and wind data on numerical weather prediction. Opt. Eng., 24, 242341, doi:10.1117/12.7973481.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2001: The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 19651990, doi:10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, W. E., and Coauthors, 2014: Lidar-measured wind profiles: The missing link in the global observing system. Bull. Amer. Meteor. Soc., 95, 543564, doi:10.1175/BAMS-D-12-00164.1.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., 2001: Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 40, 391399, doi:10.1364/AO.40.000391.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., 2002: Fringe-imaging Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 41, 503510, doi:10.1364/AO.41.000503.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., and Pelon J. , 2003: Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach–Zehnder interferometer: Principle of operation and performance assessment. Appl. Opt., 42, 11011114, doi:10.1364/AO.42.001101.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., Garnier A. , Hertzog A. , and Porteneuve J. , 2004: Wind velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer. Appl. Opt., 43, 173182, doi:10.1364/AO.43.000173.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., Blouzon F. , Spatazza J. , Montmessin F. , Pelon J. , and Faure B. , 2013: Direct-detection wind lidar operating with a multimode laser. Appl. Opt., 52, 49414949, doi:10.1364/AO.52.004941.

    • Search Google Scholar
    • Export Citation
  • Emmitt, G. D., 2000: Hybrid technology Doppler wind lidar: Assessment of simulated data products for a space-based system concept. Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, and N. Sugimoto, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4153), 366, doi:10.1117/12.417069.

  • Emmitt, G. D., 2001: Updated report on hybrid technology DWLs. Proc. Working Group on Space-Based Lidar Winds, Oxnard, CA, NOAA, 13 pp. [Available online at http://cires1.colorado.edu/events/lidarworkshop/LWG/Feb01/Papers.feb01/Paper10.feb01.ppt.]

  • Emmitt, G. D., and Wood S. A. , 1996: Simulating clouds within a space-based Doppler lidar wind sounder simulation model. Cloud Impacts on DoD Operations and Systems 1995 Conference (CIDOS - 95), D. D. Grantham, Ed., Phillips Laboratory, Hanscom Air Force Base, Environmental Research Papers 1179, PL-TR-95-2129, 69–71.

  • Emmitt, G. D., and Wood S. A. , 2003: Status of hybrid DWL study. Proc. Working Group on Space-Based Lidar Winds, Oxnard, CA, NOAA, 17 pp. [Available online at http://cires1.colorado.edu/events/lidarworkshop/LWG/Feb03/Papers.feb03/Emmitt2.feb03.ppt.]

  • Emmitt, G. D., and Wood S. A. , 2011: Performance characteristics and design trades for an ISS hybrid Doppler wind lidar. Proc. Working Group on Space-Based Lidar Winds, Miami, FL, NOAA, 48 pp. [Available online at http://cires1.colorado.edu/events/lidarworkshop/LWG/Feb11/ISSPapers.feb11/Emmitt1.feb11.pptx.]

  • Emmitt, G. D., Spinhirne J. , Menzies R. , Winker D. , and Bowdle D. , 2001: Target atmospheres for use in DWL concept studies. New Millennium Program by an Ad Hoc Committee. [Available online at http://www.swa.com.]

  • Frehlich, R., 2000: Simulation of coherent Doppler lidar performance for space-based platforms. J. Appl. Meteor., 39, 245262, doi:10.1175/1520-0450(2000)039<0245:SOCDLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2001: Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification. J. Atmos. Oceanic Technol., 18, 17491772, doi:10.1175/1520-0426(2001)018<1749:EFSBDL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2004: Velocity error for coherent Doppler lidar with pulse accumulation. J. Atmos. Oceanic Technol., 21, 905920, doi:10.1175/JTECH1596.

    • Search Google Scholar
    • Export Citation
  • Grund, C., and Tucker S. C. , 2011: Optical autocovariance wind lidar (OAWL): A new approach to direct-detection Doppler wind profiling. Fifth Symp. on Lidar Atmospheric Applications, Seattle, WA, Amer. Meteor. Soc., 4.9. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper188184.html.]

  • Grund, C., Howell J. , Pierce R. , and Stephens M. , 2009: Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms. Advanced Environmental, Chemical, and Biological Sensing Technologies VI, T. Vo-Dinh, R. A. Lieberman, and G. Gauglitz, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7312), 73120U, doi:10.1117/12.824204.

  • Hardesty, M., and Coauthors, 2005: Providing global wind profiles—The missing link in today’s observing system. CIRES, 11 pp. [Available online at http://cires1.colorado.edu/events/lidarworkshop/LWG/.]

  • Kleist, D. T., Parrish D. F. , Derber J. C. , Treadon R. , Wu W.-S. , and Lord S. , 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Kobayashi T. , 1996: Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio. Opt. Rev., 3, 4752, doi:10.1007/s10043-996-0047-0.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., Riishojgaard L. P. , Masutani M. , Woollen J. S. , and Emmitt G. D. , 2015: Impact of different satellite wind lidar telescope configurations on NCEP GFS forecast skill in observing system simulation experiments. J. Atmos. Oceanic Technol., 32, 478495, doi:10.1175/JTECH-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • McCarty, W., Errico R. M. , and Gelaro R. , 2012: Cloud coverage in the joint OSSE nature run. Mon. Wea. Rev., 140, 18631871, doi:10.1175/MWR-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Miller, T. L., and Coauthors, 2008: Simulation of the impact of new aircraft and space-based ocean surface wind measurements on H*Wind analyses. 12th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), New Orleans, LA, Amer. Meteor. Soc., P1.6. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_133851.htm.]

  • Nolan, D. S., Atlas R. , Bhatia K. T. , and Bucci L. R. , 2013: Development and validation of a hurricane nature run using the joint OSSE nature run and the WRF model. J. Adv. Model. Earth Syst., 5, 382405, doi:10.1002/jame.20031.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., Errico R. M. , and Tai K.-S. , 2013a: The influence of observation errors on analysis error and forecast skill investigated with an observing system simulation experiment. J. Geophys. Res. Atmos.,118, 5332–5346, doi:10.1002/jgrd.50452.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., Errico R. M. , and Tai K.-S. , 2013b: Validation of the forecast skill of the Global Modeling and Assimilation Office observing system simulation experiment. Quart. J. Roy. Meteor. Soc., 139, 13541363, doi:10.1002/qj.2029.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., Errico R. M. , and Tai K.-S. , 2014a: The impact of increased frequency of rawinsonde observations on forecast skill investigated with an observing system simulation experiment. Mon. Wea. Rev., 142, 18231834, doi:10.1175/MWR-D-13-00237.1.

    • Search Google Scholar
    • Export Citation
  • Privé, N. C., Xie Y. , Koch S. , Atlas R. , Majumdar S. J. , and Hoffman R. , 2014b: An observation system simulation experiment for the unmanned aircraft system data impact on tropical cyclone track forecasts. Mon. Wea. Rev., 142, 43574363, doi:10.1175/MWR-D-14-00197.1.

    • Search Google Scholar
    • Export Citation
  • Reale, O., Terry J. , Masutani M. , Andersson E. , Riishojgaard L. P. , and Jusem J. C. , 2007: Preliminary evaluation of the European Centre for Medium-Range Weather Forecasts’ (ECMWF) Nature Run over the tropical Atlantic and African monsoon region. Geophys. Res. Lett., 34, L22810, doi:10.1029/2007GL031640.

    • Search Google Scholar
    • Export Citation
  • Riishojgaard, L. P., Ma Z. , Masutani M. , Woollen J. S. , Emmitt G. D. , Wood S. A. , and Greco S. , 2012: Observation system simulation experiments for a global wind observing sounder. Geophys. Res. Lett., 39, L17805, doi:10.1029/2012GL051814.

    • Search Google Scholar
    • Export Citation
  • Schwiesow, R. L., and Mayor S. D. , 1995: Coherent optical signal processing for a Doppler lidar using a Michelson interferometer, coherent laser radar. Coherent Laser Radar: Summaries of the Papers Presented at the Topical Meeting, Technical Digest Series, Vol. 19, OSA, 212–215.

  • Stauffer, D. R., and Seaman N. L. , 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., Seaman N. L. , and Binkowski F. S. , 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754, doi:10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tucker, S., and Weimer C. , 2013: Comparing and contrasting the Optical Autocovariance Wind Lidar (OAWL) and coherent detection lidar. Proc. 17th Coherent Laser Radar Conf. (CLRC 2013), Barcelona, Spain, Universities Space Research Association, 50–53. [Available online at http://www.tsc.upc.edu/clrc/wp-content/uploads/Manuscripts/clrc2013_submission_19.pdf.]

  • Wood, S. A., Jr., Emmitt G. D. , and Greco S. , 2000: DLSM: A coherent and direct detection lidar simulation model for simulating space-based and aircraft-based lidar winds. Laser Radar Technology and Applications V, G. W. Kamerman et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4035), 2, doi:10.1117/12.397788.

  • Wood, S. A., Jr., Emmitt G. D. , and Greco S. , 2001: The challenges of accessing the future impact of space-based Doppler wind lidars while using today’s global and regional atmospheric models. Preprints, Fifth Symp. on Integrated Observing Systems, Albuquerque, NM, Amer. Meteor. Soc., P1.5. [Available online at https://ams.confex.com/ams/annual2001/webprogram/Paper18512.html.]

  • Zhang, L., and Pu Z. , 2010: An observing system simulation experiment (OSSE) to assess the impact of Doppler wind lidar (DWL) measurements on the numerical simulation of a tropical cyclone. Adv. Meteor.,2010, 743863, doi:10.1155/2010/743863.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1846 495 169
PDF Downloads 536 115 3