Principal Component Analysis Approach to Evaluate Instrument Performances in Developing a Cost-Effective Reliable Instrument Network for Atmospheric Measurements

Simone Lolli Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Simone Lolli in
Current site
Google Scholar
PubMed
Close
and
Paolo Di Girolamo Scuola di Ingegneria, Università della Basilicata, Potenza, Italy

Search for other papers by Paolo Di Girolamo in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Developing a reliable cost-effective instrument network for data measurement is a challenging task for agency decisionmakers. A simple way to fully characterize the performances of an instrument that also considers economical and operational factors—price, maintenance cost, lifetime, etc.—currently does not exist. Through principal component analysis, a method is developed to build a composite index that assigns a single score to each instrument, taking into account all the scientific, economic, and operational aspects. This index will then represent solid help in building and optimizing a cost-effective network, bridging the gap between two very different worlds: the scientific need for precision and economic constraints.

Corresponding author address: Simone Lolli, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: simone.lolli@nasa.gov

Abstract

Developing a reliable cost-effective instrument network for data measurement is a challenging task for agency decisionmakers. A simple way to fully characterize the performances of an instrument that also considers economical and operational factors—price, maintenance cost, lifetime, etc.—currently does not exist. Through principal component analysis, a method is developed to build a composite index that assigns a single score to each instrument, taking into account all the scientific, economic, and operational aspects. This index will then represent solid help in building and optimizing a cost-effective network, bridging the gap between two very different worlds: the scientific need for precision and economic constraints.

Corresponding author address: Simone Lolli, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: simone.lolli@nasa.gov
Save
  • Boquet, M., Cariou J. P. , Sauvage L. , Lolli S. , Parmentier R. , and Loaec S. , 2009: Atmospheric Boundary Layer and Clouds wind speed profile measurements with the new compact long range wind Lidar WindCube(TM) WLS70. Geophysical Research Abstracts, Vol. 11, Abstract EGU2009-10541. [Available online at http://meetingorganizer.copernicus.org/EGU2009/EGU2009-10541.pdf.]

  • Borchi, F., and Marenco A. , 2002: Discrimination of air masses near the extratropical tropopause by multivariate analyses from MOZAIC data. Atmos. Environ., 36, 11231135, doi:10.1016/S1352-2310(01)00576-3.

    • Search Google Scholar
    • Export Citation
  • Dionisi, D., Keckhut P. , Liberti G. L. , Cardillo F. , and Congeduti F. , 2013: Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman–Mie–Rayleigh lidar. Atmos. Chem. Phys., 13, 11 85311 868, doi:10.5194/acp-13-11853-2013.

    • Search Google Scholar
    • Export Citation
  • Greyling, T. A., 2013: A composite index of quality of life for the Gauteng city-region: A principal component analysis approach. GCRO Reports, Occasional Paper 7, 47 pp. [Available online at http://www.gcro.ac.za/sites/default/files/reports/occasional_paper_7.pdf.]

  • Haeffelin, M., and Coauthors, 2012: Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 4975, doi:10.1007/s10546-011-9643-z.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200, doi:10.1007/BF02289233.

    • Search Google Scholar
    • Export Citation
  • Lolli, S., Sauvage L. , Loaec S. , and Lardier M. , 2011: EZ Lidar™: A new compact autonomous eye-safe scanning aerosol Lidar for extinction measurements and PBL height detection. Validation of the performances against other instruments and intercomparison campaigns. Opt. Pura Apl.,44, 33–41.

  • Lolli, S., Delaval A. , Loth C. , Garnier A. , and Flamant P. H. , 2013a: 0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA’s ADM-Aeolus mission. Atmos. Meas. Tech., 6, 3349–3358, doi:10.5194/amt-6-3349-2013.

    • Search Google Scholar
    • Export Citation
  • Lolli, S., Welton E. J. , and Campbell J. R. , 2013b: Evaluating light rain drop size estimates from multiwavelength micropulse lidar network profiling. J. Atmos. Oceanic Technol.,30, 2798–2807, doi:10.1175/JTECH-D-13-00062.1.

  • Lund Myhre, C., and Coauthors, 2012: Recommendations for a composite surface-based aerosol network. WMO GAW Rep. 207, 58 pp. [Available online at http://www.wmo.int/pages/prog/arep/gaw/documents/Final_GAW_207_WEB.pdf.]

  • Milroy, C., and Coauthors, 2011: On the ability of pseudo-operational ground-based light detection and ranging (LIDAR) sensors to determine boundary-layer structure: Intercomparison and comparison with in-situ radiosounding. Atmos. Meas. Tech. Discuss.,4, 563597, doi:10.5194/amtd-4-563-2011.

    • Search Google Scholar
    • Export Citation
  • Milroy, C., and Coauthors, 2012: An assessment of pseudo-operational ground-based light detection and ranging sensors to determine the boundary-layer structure in the coastal atmosphere. Adv. Meteor.,2012, 929080, doi:10.1155/2012/929080.

  • Munkel, C., Eresmaa N. , Rasanen J. , and Karppinen A. , 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, doi:10.1007/s10546-006-9103-3.

    • Search Google Scholar
    • Export Citation
  • Nardo, M., Saisana M. , Saltelli A. , Tarantola S. , Hoffman A. , and Giovannini E. , 2005: Handbook on constructing composite indicators: Methodology and user guide. OECD Statistics Working Papers 2005/03, 109 pp., doi:10.1787/533411815016.

  • Nicoletti, G., Scarpetta S. , and Boylaud O. , 2000: Summary indicators of product market regulation with an extension to employment protection legislation. OECD Economics Department Working Papers 226, 87 pp., doi:10.1787/215182844604.

  • Schafer, J. S., Holben B. N. , Eck T. F. , Yamasoe M. A. , and Artaxo P. , 2002: Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols. J. Geophys. Res., 107, 8074, doi:10.1029/2001JD000428.

    • Search Google Scholar
    • Export Citation
  • Somarriba, N., and Pena B. , 2009: Synthetic indicators of quality of life in Europe. Soc. Indic. Res., 94, 115133, doi:10.1007/s11205-008-9356-y.

    • Search Google Scholar
    • Export Citation
  • Tabachnick, B. G., and Fidell L. S. , 2007: Using Multivariate Statistics. 5th ed. Pearson Education, 980 pp.

  • Wang, S. H., and Coauthors, 2013: Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during the 7-SEAS/Dongsha Experiment. Atmos. Environ., 78, 124133, doi:10.1016/j.atmosenv.2012.11.013.

    • Search Google Scholar
    • Export Citation
  • Welton, E. J., and Coauthors, 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res., 107, 8019, doi:10.1029/2000JD000038.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1243 425 180
PDF Downloads 698 112 5