Ice Crystal Sizes in High Ice Water Content Clouds. Part I: On the Computation of Median Mass Diameter from In Situ Measurements

D. Leroy Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, Aubière, France

Search for other papers by D. Leroy in
Current site
Google Scholar
PubMed
Close
,
E. Fontaine Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, Aubière, France

Search for other papers by E. Fontaine in
Current site
Google Scholar
PubMed
Close
,
A. Schwarzenboeck Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, Aubière, France

Search for other papers by A. Schwarzenboeck in
Current site
Google Scholar
PubMed
Close
, and
J. W. Strapp Met Analytics, Inc., Toronto, Ontario, Canada

Search for other papers by J. W. Strapp in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Engine and air data probe manufacturers, as well as aviation agencies, are interested in better characterization of high ice water content (HIWC) areas close to thunderstorms, since HIWC conditions are suspected to cause in-service engine power loss and air data events on commercial aircraft. In this context, a collaborative field campaign has been conducted by high-altitude ice crystals (HAIC) and HIWC projects in order to provide ice water content and median mass diameter (MMD) of ice crystals in the HIWC environment.

The computation of MMD from in situ measurements relies mainly on the definition of the crystal dimension D and on the relationship, which is used to convert number into mass distributions. The first part of this study shows that MMD can significantly deviate when using different mass–size relationships from the literature. Sensitivity tests demonstrate that MMD is significantly impacted by the choice of β. However, the larger contributor to MMD differences seems to be the choice of the size definition D itself.

Since MMDs are quite sensitive to β, this study suggests a generic method for deducing β solely from optical array probes (OAPs) image data for various size definitions. The method is based on simulations of 3D crystal objects projected onto a 2D plane, thereby relating crystal mass to 2D area (projection) and perimeter. The MMD values calculated for different size definitions are quite similar, at least much closer than MMDs derived from different m(D) relationships in the literature.

Corresponding author address: Delphine Leroy, Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière CEDEX, France. E-mail: d.leroy@opgc.univ-bpclermont.fr

Abstract

Engine and air data probe manufacturers, as well as aviation agencies, are interested in better characterization of high ice water content (HIWC) areas close to thunderstorms, since HIWC conditions are suspected to cause in-service engine power loss and air data events on commercial aircraft. In this context, a collaborative field campaign has been conducted by high-altitude ice crystals (HAIC) and HIWC projects in order to provide ice water content and median mass diameter (MMD) of ice crystals in the HIWC environment.

The computation of MMD from in situ measurements relies mainly on the definition of the crystal dimension D and on the relationship, which is used to convert number into mass distributions. The first part of this study shows that MMD can significantly deviate when using different mass–size relationships from the literature. Sensitivity tests demonstrate that MMD is significantly impacted by the choice of β. However, the larger contributor to MMD differences seems to be the choice of the size definition D itself.

Since MMDs are quite sensitive to β, this study suggests a generic method for deducing β solely from optical array probes (OAPs) image data for various size definitions. The method is based on simulations of 3D crystal objects projected onto a 2D plane, thereby relating crystal mass to 2D area (projection) and perimeter. The MMD values calculated for different size definitions are quite similar, at least much closer than MMDs derived from different m(D) relationships in the literature.

Corresponding author address: Delphine Leroy, Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178 Aubière CEDEX, France. E-mail: d.leroy@opgc.univ-bpclermont.fr
Save
  • Baker, B., and Lawson R. P. , 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Search Google Scholar
    • Export Citation
  • Baker, B., Mo Q. , Lawson R. P. , O’Connor D. , and Korolev A. , 2009: The effects of precipitation on cloud droplet measurement devices. J. Atmos. Oceanic Technol., 26, 14041409, doi:10.1175/2009JTECHA1191.1.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Rodi A. , 1989: Laboratory and wind tunnel evaluations of the Rosemount Icing Detector. J. Atmos. Oceanic Technol., 6, 971979, doi:10.1175/1520-0426(1989)006<0971:LAWTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2011: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook’s tour of mature and emerging technology. Atmos. Res., 102, 1029, doi:10.1016/j.atmosres.2011.06.021.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and Francis P. N. , 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Claffey, K. J., Jones K. F. , and Ryerson C. C. , 1995: Use and calibration of Rosemount ice detectors for meteorological research. Atmos. Res., 36, 277286, doi:10.1016/0169-8095(94)00042-C.

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., Isaac G. A. , and Korolev A. V. , 2001: Assessing the Rosemount Icing Detector with in situ measurements. J. Atmos. Oceanic Technol., 18, 515528, doi:10.1175/1520-0426(2001)018<0515:ATRIDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, R. J., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, doi:10.1002/qj.2058.

    • Search Google Scholar
    • Export Citation
  • Davison, C., MacLeod J. , Strapp J. , and Buttsworth D. , 2008: Isokinetic total water content probe in a naturally aspirating configuration: Initial aerodynamic design and testing. Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA 2008-435. [Available online at http://arc.aiaa.org/doi/abs/10.2514/6.2008-435.]

  • Delanoë, J., Protat A. , Jourdan O. , Pelon J. , Papazzoni M. , Dupuy R. , Gayet J.-F. , and Jouan C. , 2013: Comparison of airborne in situ, airborne radar–lidar, and spaceborne radar–lidar retrievals of polar ice cloud properties sampled during the POLARCAT campaign. J. Atmos. Oceanic Technol., 30, 5773, doi:10.1175/JTECH-D-11-00200.1.

    • Search Google Scholar
    • Export Citation
  • Dezitter, F., Grandin A. , Brenguier J.-L. , Hervy F. , Schlager H. , Villedieu P. , and Zalamansky G. , 2013: HAIC (high altitude ice crystals). Proc. Fifth AIAA Atmospheric and Space Environments Conf., San Diego, CA, American Institute of Aeronautics and Astronautics, AIAA 2013-2674. [Available online at http://arc.aiaa.org/doi/abs/10.2514/6.2013-2674.]

  • Duroure, C., Larsen H. R. , Isaka H. , and Personne P. , 1994: 2D image population analysis. Atmos. Res., 34, 195205, doi:10.1016/0169-8095(94)90091-4.

    • Search Google Scholar
    • Export Citation
  • Erfani, E., and Mitchell D. L. , 2015: Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing. Atmos. Chem. Phys. Discuss., 15, 28 51728 573, doi:10.5194/acpd-15-28517-2015.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., Wood R. , Brown P. R. A. , Kaye P. H. , Hirst E. , Greenaway R. , and Smith J. A. , 2003: Ice particle interarrival times measured with a fast FSSP. J. Atmos. Oceanic Technol., 20, 249261, doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., Heymsfield A. J. , and Bansemer A. , 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 13571371, doi:10.1175/JTECH1922.1.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., Schwarzenboeck A. , Delanoë J. , Wobrock W. , Leroy D. , Dupuy R. , Gourbeyre C. , and Protat A. , 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys., 14, 11 36711 392, doi:10.5194/acp-14-11367-2014.

    • Search Google Scholar
    • Export Citation
  • Grzych, M., and Mason J. , 2010: Weather conditions associated with jet engine power-loss and damage due to ingestion of ice particles: What we’ve learned through 2009. 14th Conf. on Aviation, Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 6.8. [Available online at https://ams.confex.com/ams/90annual/techprogram/paper_165923.htm.]

  • Heymsfield, A. J., 2007: On measurements of small ice particles in clouds. Geophys. Res. Lett., 34, L23812, doi:10.1029/2007GL030951.

  • Heymsfield, A. J., Bansemer A. , and Twohy C. H. , 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067, doi:10.1175/JAS3890.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Schmitt C. , Bansemer A. , and Twohy C. H. , 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, doi:10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Schmitt C. , and Bansemer A. , 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, doi:10.1175/JAS-D-12-0124.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., Lawson R. P. , Bergman J. W. , Pfister L. , Bui T. P. , and Schmitt C. G. , 2013: Physical processes controlling ice concentrations in synoptically forced, midlatitude cirrus. J. Geophys. Res. Atmos., 118, 53485360, doi:10.1002/jgrd.50421.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, doi:10.1175/JTECH1980.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Sussman B. , 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 10481057, doi:10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Isaac G. , 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, doi:10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Isaac G. , 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, doi:10.1175/JTECH1720.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Field P. R. , 2015: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech., 8, 761777, doi:10.5194/amt-8-761-2015.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, doi:10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., Angus L. J. , and Heymsfield A. J. , 1998: Cloud particle measurements in thunderstorm anvils and possible weather threat to aviation. J. Aircr., 35, 113121, doi:10.2514/2.2268.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., O’Connor D. , Zmarzly P. , Weaver K. , Baker B. , Mo Q. , and Jonsson H. , 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, doi:10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Leroy, D., and Coauthors, 2016: Ice crystal sizes in high ice water content clouds. Part II: Median mass diameter statistics in tropical convection observed during the HAIC/HIWC project. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-15-0246.1, in press.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Mason, J. G., and Grzych M. , 2011: The challenges identifying weather associated with jet engine ice crystal icing. SAE Tech. Paper 2011-38-0094, 12 pp., doi:10.4271/2011-38-0094

  • Mason, J., Strapp W. , and Chow P. , 2006: The ice particle threat to engines in flight. Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, American Institute of Aeronautics and Astronautics, AIAA 2006-206. [Available online at http://arc.aiaa.org/doi/abs/10.2514/6.2006-206.]

  • McFarquhar, G. M., and Heymsfield A. J. , 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., Timlin M. S. , Rauber R. M. , Jewett B. F. , Grim J. A. , and Jorgensen D. P. , 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48, 18851899, doi:10.1175/1520-0469(1991)048<1885:EOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2009: Assessment of Cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and Heymsfield A. J. , 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, doi:10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., and Coauthors, 2016: The High Ice Water Content (HIWC) study of deep convective clouds: Science in technical plan. FAA Rep. DOT/FAA/TC-14/31, in press.

  • Wood, N. B., L’Ecuyer T. S. , Bliven F. L. , and Stephens G. L. , 2013: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmos. Meas. Tech., 6, 36353648, doi:10.5194/amt-6-3635-2013.

    • Search Google Scholar
    • Export Citation
  • Wood, N. B., L’Ecuyer T. S. , Heymsfield A. J. , Stephens G. L. , Hudak D. R. , and Rodriguez P. , 2014: Estimating snow microphysical properties using collocated multisensor observations. J. Geophys. Res. Atmos., 119, 89418961, doi:10.1002/2013JD021303.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and McFarquhar G. M. , 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1002 298 55
PDF Downloads 743 146 18