• Altomare, C., Crespo A. J. C. , Rogers B. D. , Dominguez J. M. , Gironella X. , and Gómez-Gesteira M. , 2014: Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics. Comput. Struct., 130, 3445, doi:10.1016/j.compstruc.2013.10.011.

    • Search Google Scholar
    • Export Citation
  • Aureli, F., Maranzoni A. , Mignosa P. , and Ziveri C. , 2008: A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Adv. Water Resour., 31, 962974, doi:10.1016/j.advwatres.2008.03.005.

    • Search Google Scholar
    • Export Citation
  • Chang, T., and Chang K. , 2013: SPH modeling of one-dimensional nonrectangular and nonprismatic channel flows with open boundaries. J. Hydraul. Eng., 139, 11421149, doi:10.1061/(ASCE)HY.1943-7900.0000782.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, doi:10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cleary, P. W., 1998: Modelling confined multi-material heat and mass flows using SPH. Appl. Math. Model., 22, 981993, doi:10.1016/S0307-904X(98)10031-8.

    • Search Google Scholar
    • Export Citation
  • Clément, A. H., 1999: Benchmark test cases for numerical wave absorption: 1st Workshop of ISOPE Numerical Wave Tank Group, Montréal, May 1998. Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference, J. S. Chung et al., Eds., Vol. III, International Society of Offshore and Polar Engineers, 266289.

  • Colagrossi, A., 2003: A meshless Lagrangian method for free-surface and interface flows with fragmentation. Ph.D. thesis, Sapienza Università di Roma, 219 pp.

  • Colagrossi, A., and Landrini M. , 2003: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys., 191, 448475, doi:10.1016/S0021-9991(03)00324-3.

    • Search Google Scholar
    • Export Citation
  • Colagrossi, A., Graziani G. , and Pulvirenti M. , 2014: Particles for fluids: SPH versus vortex methods. Math. Mech. Complex Syst., 2, 4570, doi:10.2140/memocs.2014.2.45.

    • Search Google Scholar
    • Export Citation
  • Danis, M. E., Orhan M. , and Ecder A. , 2013: ISPH modelling of transient natural convection. Int. J. Comput. Fluid Dyn., 27, 1531, doi:10.1080/10618562.2012.753146.

    • Search Google Scholar
    • Export Citation
  • De Leffe, M., Le Touzé D. , and Alessandrini B. , 2010: SPH modeling of shallow-water coastal flows. J. Hydraul. Res., 48, 118125, doi:10.1080/00221686.2010.9641252.

    • Search Google Scholar
    • Export Citation
  • Delestre, O., Lucas C. , Ksinant P. , Darboux F. , Laguerre C. , Vo T. N. T. , James F. , and Cordier S. , 2013: SWASHES: A compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Methods Fluids, 72, 269300, doi:10.1002/fld.3741.

    • Search Google Scholar
    • Export Citation
  • Delis, A. I., Kazolea M. , and Kampanis N. A. , 2008: A robust high-resolution finite volume scheme for the simulation of long waves over complex domains. Int. J. Numer. Methods Fluids, 56, 419452, doi:10.1002/fld.1537.

    • Search Google Scholar
    • Export Citation
  • Federico, I., Marrone S. , Colagrossi A. , Aristodemo F. , and Antuono M. , 2012: Simulating 2D open-channel flows through an SPH model. Eur. J. Mech., 34B, 3546, doi:10.1016/j.euromechflu.2012.02.002.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege, 10, 141164.

  • Franke, R., Rodi W. , and Schönung B. , 1990: Numerical calculation of laminar vortex-shedding flow past cylinders. J. Wind Eng. Ind. Aerodyn., 35, 237257, doi:10.1016/0167-6105(90)90219-3.

    • Search Google Scholar
    • Export Citation
  • Fujihara, M., and Borthwick A. , 2000: Godunov-type solution of curvilinear shallow-water equations. J. Hydraul. Eng., 126, 827836, doi:10.1061/(ASCE)0733-9429(2000)126:11(827).

    • Search Google Scholar
    • Export Citation
  • Gingold, R. A., and Monaghan J. J. , 1977: Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. Roy. Astron. Soc., 181, 375389, doi:10.1093/mnras/181.3.375.

    • Search Google Scholar
    • Export Citation
  • Gomez-Gesteira, M., Rogers B. D. , Crespo A. J. C. , Dalrymple R. A. , Narayanaswamy M. , and Dominguez J. M. , 2012a: SPHysics—Development of a free-surface fluid solver—Part 1: Theory and formulations. Comput. Geosci., 48, 289299, doi:10.1016/j.cageo.2012.02.029.

    • Search Google Scholar
    • Export Citation
  • Gomez-Gesteira, M., Crespo A. J. C. , Rogers B. D. , Dalrymple R. A. , Dominguez J. M. , and Barreiro A. , 2012b: SPHysics—Development of a free-surface fluid solver—Part 2: Efficiency and test cases. Comput. Geosci., 48, 300307, doi:10.1016/j.cageo.2012.02.028.

    • Search Google Scholar
    • Export Citation
  • Greenberg, J. M., and Leroux A. , 1996: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal., 33, 116, doi:10.1137/0733001.

    • Search Google Scholar
    • Export Citation
  • Lastiwka, M., Basa M. , and Quinlan N. J. , 2009: Permeable and non-reflecting boundary conditions in SPH. Int. J. Numer. Methods Fluids, 61, 709724, doi:10.1002/fld.1971.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., and George D. L. , 2008: High-resolution finite volume methods for the shallow water equations with bathymetry and dry states. Advanced Numerical Models for Simulating Tsunami Waves and Runup, P. L.-F. Liu, H. Yeh, and C. Synolakis, Eds., Advances in Coastal and Ocean Engineering, Vol. 10, World Scientific, 43–73.

  • Liu, C., Zheng X. , and Sung C. H. , 1998: Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys., 139, 3557, doi:10.1006/jcph.1997.5859.

    • Search Google Scholar
    • Export Citation
  • Liu, G. R., and Liu M. B. , 2003: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Company, 449 pp.

  • Liu, M. B., and Liu G. R. , 2010: Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch. Comput. Methods Eng., 17, 2576, doi:10.1007/s11831-010-9040-7.

    • Search Google Scholar
    • Export Citation
  • Lucy, L. B., 1977: A numerical approach to the testing of the fission hypothesis. Astron. J., 82, 10131024, doi:10.1086/112164.

  • Marchesiello, P., McWilliams J. C. , and Shchepetkin A. , 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Molteni, D., Grammauta R. , and Vitanza E. , 2013: Simple absorbing layer conditions for shallow wave simulations with Smoothed Particle Hydrodynamics. Ocean Eng., 62, 7890, doi:10.1016/j.oceaneng.2012.12.048.

    • Search Google Scholar
    • Export Citation
  • Monaghan, J. J., 1985: Particle methods for hydrodynamics. Comput. Phys. Rep., 3, 71124, doi:10.1016/0167-7977(85)90010-3.

  • Monaghan, J. J., 1994: Simulating free surface flows with SPH. J. Comput. Phys., 110, 399406, doi:10.1006/jcph.1994.1034.

  • Monaghan, J. J., 1997: SPH and Riemann solvers. J. Comput. Phys., 136, 298307, doi:10.1006/jcph.1997.5732.

  • Monaghan, J. J., 2012: Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech., 44, 323346, doi:10.1146/annurev-fluid-120710-101220.

    • Search Google Scholar
    • Export Citation
  • Ni, X., and Feng W. , 2013: Numerical simulation of wave overtopping based on DualSPHysics. Appl. Mech. Mater., 405–408, 14631471, doi:10.4028/www.scientific.net/AMM.405-408.1463.

    • Search Google Scholar
    • Export Citation
  • Ni, X., and Feng W. , 2014: Numerical simulation of wave load on seawalls using smoothed particle hydrodynamics. Hydrodynamics, J. S. Chung et al., Eds., Vol. 3, Proceedings of the Twenty-Fourth (2014) International Ocean and Polar Engineering Conference, ISOPE, 492–498.

  • Ni, X., Feng W. , and Wu D. , 2014: Numerical simulations of wave interactions with vertical wave barriers using the SPH method. Int. J. Numer. Methods Fluids, 76, 223245, doi:10.1002/fld.3933.

    • Search Google Scholar
    • Export Citation
  • Perkins, A. L., Smedstad L. F. , Blake D. W. , Heburn G. W. , and Wallcraft A. J. , 1997: A new nested boundary condition for a primitive equation ocean model. J. Geophys. Res., 102, 34833500, doi:10.1029/96JC03246.

    • Search Google Scholar
    • Export Citation
  • Randles, P. W., and Libersky L. D. , 1996: Smoothed Particle Hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Eng., 139, 375408, doi:10.1016/S0045-7825(96)01090-0.

    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., and Kuo H. L. , 1984: A radiation boundary condition for multi-dimensional flows. Quart. J. Roy. Meteor. Soc., 110, 535551, doi:10.1002/qj.49711046414.

    • Search Google Scholar
    • Export Citation
  • Roshko, A., 1961: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech., 10, 345356, doi:10.1017/S0022112061000950.

    • Search Google Scholar
    • Export Citation
  • Shao, J. R., Li H. Q. , Liu G. R. , and Liu M. B. , 2012: An improved SPH method for modeling liquid sloshing dynamics. Comput. Struct., 100–101, 1826, doi:10.1016/j.compstruc.2012.02.005.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 23rd ACM National Conference, ACM, 517–524, doi:10.1145/800186.810616.

  • Sommerfeld, A., 1949: Partial Differential Equations in Physics. Pure and Applied Mathematics, Vol. 1, Academic Press, 334 pp.

  • Vacondio, R., 2010: Shallow Water and Navier-Stokes SPH-like numerical modelling of rapidly varying free-surface flows. Ph.D. thesis, Università degli Studi di Parma, 173 pp.

  • Vacondio, R., Rogers B. D. , and Stansby P. K. , 2012a: Smoothed particle hydrodynamics: Approximate zero-consistent 2-D boundary conditions and still shallow-water tests. Int. J. Numer. Methods Fluids, 69, 226253, doi:10.1002/fld.2559.

    • Search Google Scholar
    • Export Citation
  • Vacondio, R., Rogers B. D. , Stansby P. K. , and Mignosa P. , 2012b: SPH modeling of shallow flow with open boundaries for practical flood simulation. J. Hydraul. Eng., 138, 530541, doi:10.1061/(ASCE)HY.1943-7900.0000543.

    • Search Google Scholar
    • Export Citation
  • Vacondio, R., Rogers B. D. , Stansby P. K. , Mignosa P. , and Feldman J. , 2013: Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Comput. Methods Appl. Mech. Eng., 256, 132148, doi:10.1016/j.cma.2012.12.014.

    • Search Google Scholar
    • Export Citation
  • Williamson, C. H. K., 1996: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech., 28, 477539, doi:10.1146/annurev.fl.28.010196.002401.

    • Search Google Scholar
    • Export Citation
  • Xia, X., Liang Q. , Pastor M. , Zou W. , and Zhuang Y. , 2013: Balancing the source terms in a SPH model for solving the shallow water equations. Adv. Water Resour., 59, 2538, doi:10.1016/j.advwatres.2013.05.004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 530 277 9
PDF Downloads 544 335 10

Simulation of Free-Surface Flow Using the Smoothed Particle Hydrodynamics (SPH) Method with Radiation Open Boundary Conditions

View More View Less
  • 1 College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, China, and Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
  • | 2 Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
  • | 3 College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, China
Restricted access

Abstract

The smoothed particle hydrodynamics (SPH) technique is a mesh-free numerical method that has great potential to be used in the development of the next generation of numerical ocean models. The implementation of open and solid boundary conditions in the SPH method, however, is not as straightforward as the mesh-based numerical methods. Two types of open boundary conditions are considered in this study: the adaptive open boundary condition (AOBC) and Flather’s open boundary condition (FOBC). These two open boundary conditions are implemented in the SPH-based shallow-water equation (SWE) circulation model for simulating sea surface elevations and depth-mean currents over a limited area with open boundaries. The performance of these two open boundaries is assessed in four numerical test cases. In comparison with the conventional characteristic open boundary condition, both the AOBC and the FOBC allow perturbations to propagate out more effectively and are easy to implement with the specification of external flow conditions at the model open boundaries. The model results also demonstrate that the AOBC requires an accurate estimation of the phase speed of perturbations and could lead to a small drift in the mean water level. By comparison, the FOBC is computationally more efficient without any model drift. The SPH-based SWE circulation model is also used in simulating the laboratory observations of the 1993 Okushiri Tsunami. The numerical results in this case demonstrate the feasibility and capability of the SPH-based SWE model for simulating free-surface flows in regions with complicated bathymetry and irregular coastline.

Corresponding author address: Xingye Ni, Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax NS B3H 4R2, Canada. E-mail: nixingye@gmail.com; jinyu.sheng@dal.ca

Abstract

The smoothed particle hydrodynamics (SPH) technique is a mesh-free numerical method that has great potential to be used in the development of the next generation of numerical ocean models. The implementation of open and solid boundary conditions in the SPH method, however, is not as straightforward as the mesh-based numerical methods. Two types of open boundary conditions are considered in this study: the adaptive open boundary condition (AOBC) and Flather’s open boundary condition (FOBC). These two open boundary conditions are implemented in the SPH-based shallow-water equation (SWE) circulation model for simulating sea surface elevations and depth-mean currents over a limited area with open boundaries. The performance of these two open boundaries is assessed in four numerical test cases. In comparison with the conventional characteristic open boundary condition, both the AOBC and the FOBC allow perturbations to propagate out more effectively and are easy to implement with the specification of external flow conditions at the model open boundaries. The model results also demonstrate that the AOBC requires an accurate estimation of the phase speed of perturbations and could lead to a small drift in the mean water level. By comparison, the FOBC is computationally more efficient without any model drift. The SPH-based SWE circulation model is also used in simulating the laboratory observations of the 1993 Okushiri Tsunami. The numerical results in this case demonstrate the feasibility and capability of the SPH-based SWE model for simulating free-surface flows in regions with complicated bathymetry and irregular coastline.

Corresponding author address: Xingye Ni, Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax NS B3H 4R2, Canada. E-mail: nixingye@gmail.com; jinyu.sheng@dal.ca
Save