Long-Path Quantum Cascade Laser–Based Sensor for Methane Measurements

Anna P. M. Michel Mid-Infrared Technologies for Health and the Environment, Princeton University, Princeton, New Jersey

Search for other papers by Anna P. M. Michel in
Current site
Google Scholar
PubMed
Close
,
David J. Miller Mid-Infrared Technologies for Health and the Environment, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by David J. Miller in
Current site
Google Scholar
PubMed
Close
,
Kang Sun Mid-Infrared Technologies for Health and the Environment, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Kang Sun in
Current site
Google Scholar
PubMed
Close
,
Lei Tao Mid-Infrared Technologies for Health and the Environment, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Lei Tao in
Current site
Google Scholar
PubMed
Close
,
Levi Stanton Mid-Infrared Technologies for Health and the Environment, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Levi Stanton in
Current site
Google Scholar
PubMed
Close
, and
Mark A. Zondlo Mid-Infrared Technologies for Health and the Environment, and Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mark A. Zondlo in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A long-path methane (CH4) sensor was developed and field deployed using an 8-μm quantum cascade laser. The high optical power (40 mW) of the laser allowed for path-integrated measurements of ambient CH4 at total pathlengths from 100 to 1200 m with the use of a retroreflector. Wavelength modulation spectroscopy was used to make high-precision measurements of atmospheric pressure–broadened CH4 absorption over these long distances. An in-line reference cell with higher harmonic detection provided metrics of system stability in rapidly changing and harsh environments. The system consumed less than 100 W of power and required no consumables. The measurements intercompared favorably (typically less than 5% difference) with a commercial in situ methane sensor when accounting for the different spatiotemporal scales of the measurements. The sensor was field deployed for 2 weeks at an arctic lake to examine the robustness of the approach in harsh field environments. Short-term precision over a 458-m pathlength was 10 ppbv at 1 Hz, equivalent to a signal from a methane enhancement above background of 5 ppmv in a 1-m length. The sensor performed well in a range of harsh environmental conditions, including snow, rain, wind, and changing temperatures. These field measurements demonstrate the capabilities of the approach for use in detecting large but highly variable emissions in arctic environments.

Current affiliation: Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

Current affiliation: Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island.

Current affiliation: Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts.

Current affiliation: NEC Laboratories America, Princeton, New Jersey.

Current affiliation: Sonoma Technology, Inc., Petaluma, California.

Corresponding author address: Anna P. M. Michel, Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS 7, Woods Hole, MA 02543. E-mail: amichel@whoi.edu

Abstract

A long-path methane (CH4) sensor was developed and field deployed using an 8-μm quantum cascade laser. The high optical power (40 mW) of the laser allowed for path-integrated measurements of ambient CH4 at total pathlengths from 100 to 1200 m with the use of a retroreflector. Wavelength modulation spectroscopy was used to make high-precision measurements of atmospheric pressure–broadened CH4 absorption over these long distances. An in-line reference cell with higher harmonic detection provided metrics of system stability in rapidly changing and harsh environments. The system consumed less than 100 W of power and required no consumables. The measurements intercompared favorably (typically less than 5% difference) with a commercial in situ methane sensor when accounting for the different spatiotemporal scales of the measurements. The sensor was field deployed for 2 weeks at an arctic lake to examine the robustness of the approach in harsh field environments. Short-term precision over a 458-m pathlength was 10 ppbv at 1 Hz, equivalent to a signal from a methane enhancement above background of 5 ppmv in a 1-m length. The sensor performed well in a range of harsh environmental conditions, including snow, rain, wind, and changing temperatures. These field measurements demonstrate the capabilities of the approach for use in detecting large but highly variable emissions in arctic environments.

Current affiliation: Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

Current affiliation: Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island.

Current affiliation: Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts.

Current affiliation: NEC Laboratories America, Princeton, New Jersey.

Current affiliation: Sonoma Technology, Inc., Petaluma, California.

Corresponding author address: Anna P. M. Michel, Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS 7, Woods Hole, MA 02543. E-mail: amichel@whoi.edu
Save
  • Alvarez, R., Pacala S. , Winebrake J. , Chameides W. , and Hamburg S. , 2012: Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA, 109, 64356440, doi:10.1073/pnas.1202407109.

    • Search Google Scholar
    • Export Citation
  • Anderson, B., Bartlett K. B. , Frolking S. , Hayhoe K. , Jenkins J. C. , and Salas W. A. , 2010: Methane and nitrous oxide emissions from natural sources. U.S. EPA Office of Atmospheric Programs Rep. 430-R-10-001, 196 pp.

  • Bacsik, Z., Mink J. , and Keresztury G. , 2005: FTIR spectroscopy of the atmosphere part 2. Applications. Appl. Spectrosc. Rev., 40, 327390, doi:10.1080/05704920500230906.

    • Search Google Scholar
    • Export Citation
  • Brooke, J., and Coauthors, 2012: Greenhouse gas measurements over a 144 km open path in the Canary Islands. Atmos. Meas. Tech., 5, 23092319, doi:10.5194/amt-5-2309-2012.

    • Search Google Scholar
    • Export Citation
  • Childers, J., Thompson E. L. Jr., Harris D. , Kirchgessner D. , Clayton M. , Natschke D. , and Phillips W. , 2001: Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry. Atmos. Environ., 35, 19231936, doi:10.1016/S1352-2310(00)00545-8.

    • Search Google Scholar
    • Export Citation
  • Cole, J., and Coauthors, 2007: Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 172185, doi:10.1007/s10021-006-9013-8.

    • Search Google Scholar
    • Export Citation
  • Demirgian, J., and Macha S. , 1999: Collection of quantitative chemical release field data. Field Anal. Chem. Technol., 3, 95104, doi:10.1002/(SICI)1520-6521(1999)3:2<95::AID-FACT4>3.0.CO;2-G.

    • Search Google Scholar
    • Export Citation
  • Desjardins, R., Denmead O. , Harper L. , McBain M. , Masse D. , and Kaharabata S. , 2004: Evaluation of a micrometeorological mass balance method employing an open-path laser for measuring methane emissions. Atmos. Environ., 38, 68556866, doi:10.1016/j.atmosenv.2004.09.008.

    • Search Google Scholar
    • Export Citation
  • Dlugokencky, E., Nisbet E. , Fisher R. , and Lowry D. , 2011: Global atmospheric methane: Budget, changes and dangers. Philos. Trans. Roy. Soc. London, 369, 20582072, doi:10.1098/rsta.2010.0341.

    • Search Google Scholar
    • Export Citation
  • Eugster, W., and Pluss P. , 2010: A fault-tolerant eddy covariance system for measuring CH4 fluxes. Agric. For. Meteor., 150, 841851, doi:10.1016/j.agrformet.2009.12.008.

    • Search Google Scholar
    • Export Citation
  • Farrell, P., Culling D. , and Leifer I. , 2013: Transcontinental methane measurements: Part 1. A mobile surface platform for source investigations. Atmos. Environ., 74, 422431, doi:10.1016/j.atmosenv.2013.02.014.

    • Search Google Scholar
    • Export Citation
  • Flesch, T., Wilson J. , Harper L. , Todd R. , and Cole N. , 2007: Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique. Agric. For. Meteor., 144, 139155, doi:10.1016/j.agrformet.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Garcia-Tigreros Kodovska, F. G.-T., Sparrow K. J. , Yvon-Lewis S. A. , Paytan A. , Dimova N. T. , Lecher A. , and Kessler J. D. , 2016: Dissolved methane and carbon dioxide fluxes in Subarctic and Arctic regions: Assessing measurement techniques and spatial gradients. Earth Planet. Sci. Lett., 436, 4355, doi:10.1016/j.epsl.2015.12.002.

    • Search Google Scholar
    • Export Citation
  • Gibson, G., van Well B. , Hodgkinson J. , Pride R. , Strzoda R. , Murray S. , Bishton S. , and Padgett M. , 2006: Imaging of methane gas using a scanning, open-path laser system. New J. Phys., 8, 26, doi:10.1088/1367-2630/8/2/026.

    • Search Google Scholar
    • Export Citation
  • Griffith, D., and Galle B. , 2000: Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux–gradient technique. Atmos. Environ., 34, 10871098, doi:10.1016/S1352-2310(99)00368-4.

    • Search Google Scholar
    • Export Citation
  • Howarth, R., Santoro R. , and Ingraffea A. , 2011: Methane and the greenhouse gas footprint of natural gas from shale formations. Climatic Change Lett., 106, 679690, doi:10.1007/s10584-011-0061-5.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Isaksen, I., Gauss M. , Myhre G. , Anthony K. W. , and Ruppel C. , 2011: Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Global Biogeochem. Cycles, 25, GB2002, doi:10.1029/2010GB003845.

    • Search Google Scholar
    • Export Citation
  • Karion, A., and Coauthors, 2013: Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett., 40, 43934397, doi:10.1002/grl.50811.

    • Search Google Scholar
    • Export Citation
  • McDermitt, D., and Coauthors, 2011: A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl. Phys., 102A, 391405, doi:10.1007/s00340-010-4307-0.

    • Search Google Scholar
    • Export Citation
  • Michel, A. P., and Coauthors, 2010: Quantum cascade laser open-path system for remote sensing of trace gases in Beijing, China. Opt. Eng., 49, 111125, doi:10.1117/1.3509316.

    • Search Google Scholar
    • Export Citation
  • Miller, D., Sun K. , Tao L. , Khan M. , and Zondlo M. , 2014: Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements. Atmos. Meas. Tech., 7, 8193, doi:10.5194/amt-7-81-2014.

    • Search Google Scholar
    • Export Citation
  • Miller, S., and Coauthors, 2013: Anthropogenic emissions of methane in the United States. Proc. Natl. Acad. Sci. USA, 110, 20 01820 022, doi:10.1073/pnas.1314392110.

    • Search Google Scholar
    • Export Citation
  • Montzka, S., Dlugokencky E. , and Butler J. , 2011: Non-CO2 greenhouse gases and climate change. Nature, 476, 4350, doi:10.1038/nature10322.

    • Search Google Scholar
    • Export Citation
  • Peischl, J., and Coauthors, 2012: Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. J. Geophys. Res., 117, D00V25, doi:10.1029/2012JD017994.

    • Search Google Scholar
    • Export Citation
  • Peltola, O., Mammarella I. , Haapanala S. , Burba G. , and Vesala T. , 2013: Field intercomparison of four methane gas analysers suitable for eddy covariance flux measurements. Biogeosciences, 10, 37493765, doi:10.5194/bg-10-3749-2013.

    • Search Google Scholar
    • Export Citation
  • Pétron, G., and Coauthors, 2012: Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. J. Geophys. Res., 117, D04304, doi:10.1029/2011JD016360.

    • Search Google Scholar
    • Export Citation
  • Rigby, M., and Coauthors, 2008: Renewed growth of atmospheric methane. Geophys. Res. Lett., 35, L22805, doi:10.1029/2008GL036037.

  • Rothman, L., and Coauthors, 2009: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 110, 533572, doi:10.1016/j.jqsrt.2009.02.013.

    • Search Google Scholar
    • Export Citation
  • Schilt, S., Thévenaz L. , and Robert P. , 2003: Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt., 42, 67286738, doi:10.1364/AO.42.006728.

    • Search Google Scholar
    • Export Citation
  • Sun, K., Tao L. , Miller D. , Khan M. , and Zondlo M. , 2013: In-line multi-harmonic calibration method for open-path atmospheric ammonia measurements. Appl. Phys., 110B, 213222, doi:10.1007/s00340-012-5231-2.

    • Search Google Scholar
    • Export Citation
  • Suto, H., and Inoue G. , 2010: A new portable instrument for in situ measurement of atmospheric methane mole fraction by applying an improved tin dioxide–based gas sensor. J. Atmos. Oceanic Technol., 27, 11751184, doi:10.1175/2010JTECHA1400.1.

    • Search Google Scholar
    • Export Citation
  • Tao, L., Sun K. , Khan M. , Miller D. , and Zondlo M. , 2012: Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser. Opt. Express, 20, 28 10628 118, doi:10.1364/OE.20.028106.

    • Search Google Scholar
    • Export Citation
  • Thoma, E., and Coauthors, 2005: Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data. J. Air Waste Manage. Assoc., 55, 658668, doi:10.1080/10473289.2005.10464654.

    • Search Google Scholar
    • Export Citation
  • Walter, K. M., Smith L. C. , and Chapin F. S. III, 2007: Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Philos. Trans. Roy. Soc. London, 365A, 16571676, doi:10.1098/rsta.2007.2036.

    • Search Google Scholar
    • Export Citation
  • Walter-Anthony, K. M., and Anthony P. , 2013: Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J. Geophys. Res. Biogeosci., 118, 10151034, doi:10.1002/jgrg.20087.

    • Search Google Scholar
    • Export Citation
  • Werle, P., 2011: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence. Appl. Phys., 102B, 313329, doi:10.1007/s00340-010-4165-9.

    • Search Google Scholar
    • Export Citation
  • Xia, H., and Coauthors, 2008: An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy. Chin. Opt. Lett., 6, 437440.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2690 697 201
PDF Downloads 648 159 13