• Abel, P., Guenther B. , Galimore R. N. , and Cooper J. W. , 1993: Calibration results for the NOAA-11 AVHRR channels 1 and 2 from congruent path aircraft observations. J. Atmos. Oceanic Technol., 10, 493508, doi:10.1175/1520-0426(1993)010<0493:CRFACA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bhatt, R., Doelling D. R. , Morstad D. , Scarino B. R. , and Gopalan A. , 2014a: Desert-based absolute calibration of successive geostationary visible sensors using a daily exoatmospheric radiance model. IEEE Trans. Geosci. Remote Sens., 52, 36703682, doi:10.1109/TGRS.2013.2274594.

    • Search Google Scholar
    • Export Citation
  • Bhatt, R., Doelling D. R. , Wu A. , Xiaong X. , Scarino B. R. , Haney C. O. , and Gopalan A. , 2014b: Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sens., 6, 28092826, doi:10.3390/rs6042809.

    • Search Google Scholar
    • Export Citation
  • Bhatt, R., Doelling D. R. , Scarino B. R. , Gopalan A. , and Haney C. , 2015: Toward consistent radiometric calibration of the NOAA AVHRR visible and near-infrared data record. Earth Observing Systems XX, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9607), 960703, doi:10.1117/12.2186816.

  • Brest, C. L., and Rossow W. B. , 1992: Radiometric calibration and monitoring of NOAA AVHRR data for ISCCP. Int. J. Remote Sens., 13, 235273, doi:10.1080/01431169208904037.

    • Search Google Scholar
    • Export Citation
  • Che, N., and Price J. C. , 1992: Survey of radiometric calibration results and methods for visible and near infrared channels of NOAA-7, -9 and -11 AVHRRs. Remote Sens. Environ., 41, 1927, doi:10.1016/0034-4257(92)90057-Q.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Cosnefroy, H., Leroy M. , and Briottet X. , 1996: Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ., 58, 101114, doi:10.1016/0034-4257(95)00211-1.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Minnis P. , 2016: Calibration of historical and future AVHRR and GOES visible and near-infrared sensors. Algorithm Theoretical Basis Doc. CDRP-ATBD-0823, 50 pp. [Available online at https://www.ncdc.noaa.gov/sites/default/files/cdr-documentation/%3Cem%3EEdit%20Climate%20Data%20Record%3C/em%3E%20AVHRR%20Radiances%20-%20NASA/CDRP-ATBD-0823%20AVHRR%20Radiances%20-%20NASA%20C-ATBD%20(01B-30a)%20(DSR-1048).pdf.]

  • Doelling, D. R., Chakrapani V. , Minnis P. , and Nguyen L. , 2001: The calibration of NOAA-AVHRR visible radiances with VIRS. Preprints, 11th Conf. on Satellite Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc., P5.29. [Available online at https://ams.confex.com/ams/11satellite/techprogram/paper_24401.htm.]

  • Doelling, D. R., Nguyen L. , and Minnis P. , 2004: On the use of deep convective clouds to calibrate AVHRR data. Earth Observing Systems IX, W. L. Barnes and J. J. Butler, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5542), 281–289, doi:10.1117/12.560047.

  • Doelling, D. R., Morstad D. , Bhatt R. , and Scarino B. R. , 2011: Algorithm theoretical basis document (ATBD) for deep convective cloud (DCC) technique of calibrating GEO sensors with Aqua-MODIS for GSICS. 2011 GSICS User’s Workshop, Oslo, Norway, EUMETSAT, 11 pp. [Available online at http://gsics.atmos.umd.edu/pub/Development/AtbdCentral/GSICS_ATBD_DCC_NASA_2011_09.pdf.]

  • Doelling, D. R., Lukashin C. , Minnis P. , Scarino B. R. , and Morstad D. , 2012: Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data. IEEE Geosci. Remote Sens. Lett., 9, 119123, doi:10.1109/LGRS.2011.2161751.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Morstad D. , Scarino B. R. , Bhatt R. , and Gopalan A. , 2013: The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Trans. Geosci. Remote Sens., 51, 11471159, doi:10.1109/TGRS.2012.2225066.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Wu A. , Xiong X. , Scarino B. , Bhatt R. , Haney C. , Morstad D. , and Gopalan A. , 2015: The radiometric stability and scaling of collection 6 Terra- and Aqua-MODIS VIS, NIR, and SWIR spectral bands. IEEE Trans. Geosci. Remote Sens., 53, 45204535, doi:10.1109/TGRS.2015.2400928.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Bhatt R. , Scarino B. R. , Gopalan A. , Haney C. O. , Minnis P. , and Bedka K. M. , 2016: A consistent AVHRR visible calibration record based on multiple methods applicable for the NOAA degrading orbits. Part II: Validation. J. Atmos. Oceanic Technol., 33, 25172534, doi:10.1175/JTECH-D-16-0042.1.

    • Search Google Scholar
    • Export Citation
  • Frouin, R., and Gautier C. , 1987: Calibration of NOAA-7 AVHRR, GOES-5 and GOES-6 VISSR/VAS solar channels. Remote Sens. Environ., 22, 73101, doi:10.1016/0034-4257(87)90028-9.

    • Search Google Scholar
    • Export Citation
  • Govaerts, Y., 2015: Sand dune ridge alignment effects on surface BRF over the Libya-4 CEOS calibration site. Sensors, 15, 34533470, doi:10.3390/s150203453.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Cao C. , and Sullivan J. T. , 2002: Using Moderate Resolution Imaging Spectroradiometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107, 4702, doi:10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Straka W. C. III, Molling C. C. , and Sullivan J. T. , 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, doi:10.1080/01431161.2010.496472.

    • Search Google Scholar
    • Export Citation
  • Helder, D. L., Basnet B. , and Morstad D. L. , 2010: Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens., 36, 527539, doi:10.5589/m10-085.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., Kaufman Y. J. , and Kendall J. D. , 1990: NOAA AVHRR visible and near-IR inflight calibration. Int. J. Remote Sens., 11, 15111519, doi:10.1080/01431169008955109.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Wielicki B. A. , Yang P. , Stackhouse P. W. Jr., Lin B. , and Young D. F. , 2004: Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: Monitoring the stability of spaceborne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens., 42, 25942599, doi:10.1109/TGRS.2004.834765.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., Sapper J. , Cox S. , Laszlo I. , Nalli N. R. , and Kidwell K. B. , 2004: Operational Aerosol Observations (AEROBS) from AVHRR/3 on board NOAA-KLM satellites. J. Atmos. Oceanic Technol., 21, 326, doi:10.1175/1520-0426(2004)021<0003:OAOAFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., Cao C. , and Sullivan J. , 2005: The usefulness of in-flight measurements of space count to improve calibration of the AVHRR solar reflectance bands. J. Atmos. Oceanic Technol., 22, 180200, doi:10.1175/JTECH-1691.1.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and Holben B. N. , 1993: Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. Int. J. Remote Sens., 14, 2152, doi:10.1080/01431169308904320.

    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., Sullivan J. T. , and Ciren P. B. , 1996: Testing post-launch calibration for the AVHRR sensor on world desert targets during 1985–1993. Adv. Space Res., 17, 4750, doi:10.1016/0273-1177(95)00444-J.

    • Search Google Scholar
    • Export Citation
  • Li, C., Xue Y. , Liu Q. , Ouzzane K. , and Zhang J. , 2015: Using SeaWiFS measurements to evaluate radiometric stability of pseudo-invariant calibration sites at top of atmosphere. IEEE Geosci. Remote Sens. Lett., 12, 125129, doi:10.1109/LGRS.2014.2329138.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., 1997: In-flight calibration of NOAA AVHRR visible and near-IR bands over Greenland and Antarctica. Int. J. Remote Sens., 18, 477490, doi:10.1080/014311697218908.

    • Search Google Scholar
    • Export Citation
  • Masonis, S. J., and Warren S. G. , 2001: Gain of the AVHRR visible channel as tracked using bidirectional reflectance of Antarctic and Greenland snow. Int. J. Remote Sens., 22, 14951520, doi:10.1080/01431160121039.

    • Search Google Scholar
    • Export Citation
  • Mitchell, R. M., 2001: In-flight characteristics of the space count of NOAA AVHRR channels 1 and 2. CSIRO Atmospheric Research Tech. Paper 52, 24 pp. [Available online at http://www.cmar.csiro.au/e-print/open/mitchellr_2001a.pdf.]

  • Molling, C. C., Heidinger A. K. , Straka W. C. , and Wu X. , 2010: Calibrations for AVHRR channels 1 and 2: Review and path towards consensus. Int. J. Remote Sens., 31, 65196540, doi:10.1080/01431161.2010.496473.

    • Search Google Scholar
    • Export Citation
  • Morstad, D. L., Doelling D. R. , Bhatt R. , and Scarino B. R. , 2011: The CERES calibration strategy of the geostationary visible channels for CERES cloud and flux products. Earth Observing Systems XVI, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8153), 815316, doi:10.1117/12.894650.

  • Nagaraja Rao, C. R., and Chen J. , 1995: Inter-satellite calibration linkages for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 spacecraft. Int. J. Remote Sens., 16, 19311942, doi:10.1080/01431169508954530.

    • Search Google Scholar
    • Export Citation
  • Nagaraja Rao, C. R., and Chen J. , 1999: Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens., 20, 34853491, doi:10.1080/014311699211147.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: Equatorial crossing time (ECT) for NOAA polar satellites. NOAA Center for Satellite Applications and Research, accessed 26 January 2016. [Available online at http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_avhrr_ect.php.]

  • Nolin, A. W., and Dozier J. , 2000: A hyperspectral method for remotely sensing the grain size of snow. Remote Sens. Environ., 74, 207216, doi:10.1016/S0034-4257(00)00111-5.

    • Search Google Scholar
    • Export Citation
  • Price, J. C., 1991: Timing of NOAA afternoon passes. Int. J. Remote Sens., 12, 193198, doi:10.1080/01431169108929644.

  • Roujean, J. L., Leroy M. J. , and Deschamps P. Y. , 1992: A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res., 97, 20 45520 468, doi:10.1029/92JD01411.

    • Search Google Scholar
    • Export Citation
  • Scarino, B. R., Doelling D. R. , Morstad D. L. , Bhatt R. , Lukashin C. , and Minnis P. , 2012: Using SCHIAMACHY to improve corrections for spectral and differences when transferring calibration between visible sensors. Earth Observing Systems XVII, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8510), 85100Q, doi:10.1117/12.929767.

  • Scarino, B. R., Doelling D. R. , Minnis P. , Gopalan A. , Chee T. , Bhatt R. , Lukashin C. , and Haney C. , 2016: A web-based tool for calculating spectral band difference adjustment factors derived from SCIAMACHY hyperspectral data. IEEE Trans. Geosci. Remote Sens., 54, 25292542, doi:10.1109/TGRS.2015.2502904.

    • Search Google Scholar
    • Export Citation
  • Smith, D. L., and Cox C. V. , 2013: (A)ATSR solar channel on-orbit radiometric calibration. IEEE Trans. Geosci. Remote Sens., 51, 13701382, doi:10.1109/TGRS.2012.2230333.

    • Search Google Scholar
    • Export Citation
  • Smith, G. R., Levin R. H. , Abel P. , and Jacobowitz H. , 1988: Calibration of the solar channels of the NOAA-9 AVHRR using high altitude aircraft measurements. J. Atmos. Oceanic Technol., 5, 631639, doi:10.1175/1520-0426(1988)005<0631:COTSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Staylor, W. F., 1990: Degradation rates of the AVHRR visible channel for the NOAA 6, 7 and 9 spacecraft. J. Atmos. Oceanic Technol., 7, 411423, doi:10.1175/1520-0426(1990)007<0411:DROTAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tahnk, W. R., and Coakley J. A. Jr., 2001: Improved calibration coefficients for NOAA-14 AVHRR visible and near-infrared channels. Int. J. Remote Sens., 22, 12691283, doi:10.1080/01431160151144341.

    • Search Google Scholar
    • Export Citation
  • Tahnk, W. R., and Coakley J. A. Jr., 2002: Improved calibration coefficients for NOAA-12 and NOAA-15 AVHRR visible and near-IR channels. J. Atmos. Oceanic Technol., 19, 18261833, doi:10.1175/1520-0426(2002)019<1826:ICCFNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teillet, P. M., Slater P. N. , Ding Y. , Santer R. P. , Jackson R. D. , and Moran M. S. , 1990: Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote Sens. Environ., 31, 105120, doi:10.1016/0034-4257(90)90060-Y.

    • Search Google Scholar
    • Export Citation
  • Thuillier, G., Hersé M. , Labs D. , Foujols T. , Peetermans W. , Gillotay D. , Simon P. C. , and Mandel H. , 2003: The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Sol. Phys., 214, 122, doi:10.1023/A:1024048429145.

    • Search Google Scholar
    • Export Citation
  • Uprety, S., and Cao C. , 2011: Using the Dome C site to characterize AVHRR near-infrared channel for consistent radiometric calibration. Earth Observing Systems XVI, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8153), 81531Y, doi:10.1117/12.892481.

  • Vermote, E., and Kaufman Y. J. , 1995: Absolute calibration of AVHRR visible and near- infrared channels using ocean and cloud views. Int. J. Remote Sens., 16, 23172340, doi:10.1080/01431169508954561.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and Cao C. , 2015: DCC radiometric sensitivity to spatial resolution, cluster size, and LWIR calibration bias based on VIIRS observations. J. Atmos. Oceanic Technol., 32, 4860, doi:10.1175/JTECH-D-14-00024.1.

    • Search Google Scholar
    • Export Citation
  • Whitlock, C. H., and Coauthors, 1990: AVHRR and VISSR satellite instrument calibration results for both cirrus and marine stratocumulus IFO periods. FIRE science results 1988, D. S. McDougal and H. S. Wagner, Eds., NASA Conf. Publ. 3083, 141–145.

  • Wielicki, B. A., Doelling D. R. , Young D. F. , Loeb N. G. , Garber D. P. , and MacDonnell D. G. , 2008: Climate quality broadband and narrowband solar reflected radiance calibration between sensors in orbit. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, Vol. 1, IEEE, I-257–I-260, doi:10.1109/IGARSS.2008.4778842.

  • Wu, A., and Zhong Q. , 1994: A method for determining the sensor degradation rates of NOAA AVHRR channels 1 and 2. J. Appl. Meteor., 33, 118122, doi:10.1175/1520-0450(1994)033<0118:AMFDTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, A., Cao C. , and Xiong X. , 2006: Using MODIS to track calibration stability of the AVHRR on NOAA 15-18. Remote Sensing and Modeling of Ecosystems for Sustainability III, W. Gao and S. L. Ustin, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6298), 629812, doi:10.1117/12.681199.

  • Wu, A., Xiong X. , and Angal A. , 2013a: Deriving a MODIS-based calibration for the AVHRR reflective solar channels of the NOAA KLM operational satellites. IEEE Trans. Geosci. Remote Sens., 51, 14051413, doi:10.1109/TGRS.2012.2220780.

    • Search Google Scholar
    • Export Citation
  • Wu, A., Xiong X. , Doelling D. R. , Morstad D. L. , Angal A. , and Bhatt R. , 2013b: Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR spectral band calibration stability. IEEE Trans. Geosci. Remote Sens., 51, 43304338, doi:10.1109/TGRS.2012.2226588.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Sullivan J. T. , and Heidinger A. K. , 2010: Operational calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible and near-infrared channels. Can. J. Remote Sens., 36, 602616, doi:10.5589/m10-080.

    • Search Google Scholar
    • Export Citation
  • Yu, F., and Wu X. , 2010: Water vapor correction to improve the operational calibration for NOAA AVHRR/3 channel 2 (0.85 μm) over a desert target. Can. J. Remote Sens., 36, 514526, doi:10.5589/m10-077.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 517 228 11
PDF Downloads 337 181 6

A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology

View More View Less
  • 1 Science Systems and Applications, Inc., Hampton, Virginia
  • | 2 NASA Langley Research Center, Hampton, Virginia
  • | 3 Science Systems and Applications, Inc., Hampton, Virginia
  • | 4 NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

The 35-yr NOAA Advanced Very High Resolution Radiometer (AVHRR) observation record offers an excellent opportunity to study decadal climate variability, provided that all participating AVHRR instruments are calibrated on a consistent radiometric scale. Because of the lack of onboard calibration systems, the solar imaging channels of the AVHRR must be vicariously calibrated using invariant Earth targets as a calibrated reference source. The greatest challenge in calibrating the AVHRR dataset is the orbit degradation of the NOAA satellites, which eventually drift into a terminator orbit several years after launch. Therefore, the invariant targets must be characterized over the full range of solar zenith angles (SZAs) sampled by the satellite instrument.

This study outlines a multiple invariant Earth target calibration approach specifically designed to account for the degrading NOAA orbits. The desert, polar ice, and deep convective cloud (DCC) invariant targets are characterized over all observed SZAs using NOAA-16 AVHRR measurements, which are referenced to the Aqua MODIS Collection 6 calibration via direct transfer of the MODIS calibration to the NOAA-16 AVHRR instrument using simultaneous nadir overpass (SNO) observations over the North Pole. The multiple invariant target calibrations are combined using the inverse of their temporal variance to optimize the resulting calibration stability. The NOAA-18 AVHRR gains derived using the desert, polar ice, and DCC targets, as well as from SNO, were found consistent within 1%, thereby validating that the Aqua MODIS calibration is effectively transferred to the reference calibration targets. The companion paper, Part II, applies the methodology across the AVHRR record to derive the sensor-specific calibration coefficients.

Corresponding author address: Rajendra Bhatt, Science Systems and Applications, Inc., 1 Enterprise Pkwy., Suite 200, Hampton, VA 23666. E-mail: rajendra.bhatt@nasa.gov

Abstract

The 35-yr NOAA Advanced Very High Resolution Radiometer (AVHRR) observation record offers an excellent opportunity to study decadal climate variability, provided that all participating AVHRR instruments are calibrated on a consistent radiometric scale. Because of the lack of onboard calibration systems, the solar imaging channels of the AVHRR must be vicariously calibrated using invariant Earth targets as a calibrated reference source. The greatest challenge in calibrating the AVHRR dataset is the orbit degradation of the NOAA satellites, which eventually drift into a terminator orbit several years after launch. Therefore, the invariant targets must be characterized over the full range of solar zenith angles (SZAs) sampled by the satellite instrument.

This study outlines a multiple invariant Earth target calibration approach specifically designed to account for the degrading NOAA orbits. The desert, polar ice, and deep convective cloud (DCC) invariant targets are characterized over all observed SZAs using NOAA-16 AVHRR measurements, which are referenced to the Aqua MODIS Collection 6 calibration via direct transfer of the MODIS calibration to the NOAA-16 AVHRR instrument using simultaneous nadir overpass (SNO) observations over the North Pole. The multiple invariant target calibrations are combined using the inverse of their temporal variance to optimize the resulting calibration stability. The NOAA-18 AVHRR gains derived using the desert, polar ice, and DCC targets, as well as from SNO, were found consistent within 1%, thereby validating that the Aqua MODIS calibration is effectively transferred to the reference calibration targets. The companion paper, Part II, applies the methodology across the AVHRR record to derive the sensor-specific calibration coefficients.

Corresponding author address: Rajendra Bhatt, Science Systems and Applications, Inc., 1 Enterprise Pkwy., Suite 200, Hampton, VA 23666. E-mail: rajendra.bhatt@nasa.gov
Save