• Campbell Scientific, Inc., 2015: CSAT3 three dimensional sonic anemometer instruction manual. Revision 2/15, 74 pp. [Available online at https://s.campbellsci.com/documents/us/manuals/csat3.pdf.]

  • Dellwik, E., Mann J. , Sjöholm M. , Angelou N. , and Mikkelsen T. , 2014: Comparison of three-dimensional wind measurements by wind-lidars and a sonic anemometer. Extended Abstracts, 14th EMS Annual Meeting/10th European Conf. on Applied Climatology (ECAC), Prague, Czech Republic, European Meteorological Society, EMS2014-277. [Available online at http://meetingorganizer.copernicus.org/EMS2014/EMS2014-277.pdf.]

  • Edson, J. B., Hinton A. A. , Prada K. E. , Hare J. E. , and Fairall C. W. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, J. M., Massman W. J. , and Ewers B. E. , 2013: Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers. Agric. For. Meteor., 171–172, 7281, doi:10.1016/j.agrformet.2012.11.005.

    • Search Google Scholar
    • Export Citation
  • Frank, J. M., Massman W. J. , Swiatek E. , Zimmerman H. A. , and Ewers B. E. , 2016: All sonic anemometers need to correct for transducer and structural shadowing in their velocity measurements. J. Atmos. Oceanic Technol., 33, 149167, doi:10.1175/JTECH-D-15-0171.1.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., Hansen F. , Courtney M. , and Herbers T. , 1993: Directional attributes of the ocean surface wind stress vector. J. Geophys. Res., 98, 16 57116 582, doi:10.1029/93JC01439.

    • Search Google Scholar
    • Export Citation
  • Gill Instruments Ltd., 2005: Omnidirectional (R3-50) ultrasonic anemometer user manual. Doc. 1210-PS-0011, Issue 04, 67 pp. [Available online at gillinstruments.com/data/manuals/r3-50-manual.pdf?iss=4.20150501.]

  • Grachev, A. A., Fairall C. W. , Hare J. E. , Edson J. B. , and Miller S. D. , 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, doi:10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grelle, A., and Lindroth A. , 1994: Flow distortion by a Solent sonic anemometer: Wind tunnel calibration and its assessment for flux measurements over forest and field. J. Atmos. Oceanic Technol., 11, 15291542, doi:10.1175/1520-0426(1994)011<1529:FDBASS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogstrom, U., and Smedman A.-S. , 2004: Accuracy of sonic anemometers: Laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Bound.-Layer Meteor., 111, 3354, doi:10.1023/B:BOUN.0000011000.05248.47.

    • Search Google Scholar
    • Export Citation
  • Horst, T. W., Semmer S. R. , and Maclean G. , 2015: Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing. Bound.-Layer Meteor., 155, 371395, doi:10.1007/s10546-015-0010-3.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J., 1978: Sonic anemometer measurement of atmospheric turbulence. Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows, B. W. Hansen, Ed., Springer, 551565, doi:10.1007/978-94-009-9565-9_29.

  • Kochendorfer, J., Meyers T. , Frank J. , Massman W. , and Heuer M. , 2012: How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Bound.-Layer Meteor., 145, 383398, doi:10.1007/s10546-012-9738-1.

    • Search Google Scholar
    • Export Citation
  • Loescher, H., and Coauthors, 2005: Comparison of temperature and wind statistics in contrasting environments among different sonic anemometer–thermometers. Agric. For. Meteor., 133, 119139, doi:10.1016/j.agrformet.2005.08.009.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., 2013: A comment on “How well can we measure the vertical wind speed? Implications for fluxes of energy and mass” by Kochendorfer et al. Bound.-Layer Meteor., 147, 329335, doi:10.1007/s10546-012-9794-6.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Coauthors, 2007: The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound.-Layer Meteor., 123, 2954, doi:10.1007/s10546-006-9139-4.

    • Search Google Scholar
    • Export Citation
  • Meyers, T., and Heuer M. , 2006: A field methodology to evaluate sonic anemometer angle of attack errors. 27th Conf. on Agricultural and Forest Meteorology, San Diego, CA, Amer. Meteor. Soc., 1.8A. [Available online at https://ams.confex.com/ams/BLTAgFBioA/webprogram/Paper114559.html.]

  • Nakai, T., and Shimoyama K. , 2012: Ultrasonic anemometer angle of attack errors under turbulent conditions. Agric. For. Meteor., 162-163, 1426, doi:10.1016/j.agrformet.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Nakai, T., van der Molen M. , Gash J. , and Kodama Y. , 2006: Correction of sonic anemometer angle of attack errors. Agric. For. Meteor., 136, 1930, doi:10.1016/j.agrformet.2006.01.006.

    • Search Google Scholar
    • Export Citation
  • Nakai, T., Iwata H. , Harazono Y. , and Ueyama M. , 2014: An inter-comparison between Gill and Campbell sonic anemometers. Agric. For. Meteor., 195–196, 123131, doi:10.1016/j.agrformet.2014.05.005.

    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., Smith J. A. , and Weller R. A. , 1994: Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J. Geophys. Res., 99, 22 58922 596, doi:10.1029/94JC02215.

    • Search Google Scholar
    • Export Citation
  • van der Molen, M., Gash J. , and Elbers J. , 2004: Sonic anemometer (co)sine response and flux measurement: II. The effect of introducing an angle of attack dependent calibration. Agric. For. Meteor., 122, 95109, doi:10.1016/j.agrformet.2003.09.003.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and Mahrt L. , 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J., Oncley S. , and Stage S. , 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 503 246 16
PDF Downloads 394 198 10

The Influence of Wind Direction on Campbell Scientific CSAT3 and Gill R3-50 Sonic Anemometer Measurements

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

Measurements from the Campbell CSAT3 and Gill R3-50 anemometers were conducted in four different experiments, in laboratory and field environments. Consistent differences between these two sonic anemometers were observed. The data have revealed that the differences were strongly correlated with the wind direction. According to the datasets used, the CSAT3 was the anemometer whose measurements were more sensitive to the instrument’s orientation relative to the wind direction. While the mean wind speed and direction remained within the manufacturers’ specifications (a few percent for the wind speed and a few degrees for the wind direction), the estimates of the friction velocity from the CSAT3 differed from the R3-50 by up to 20%.

Denotes Open Access content.

Corresponding author address: Laurent Grare, Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: lgrare@ucsd.edu

Abstract

Measurements from the Campbell CSAT3 and Gill R3-50 anemometers were conducted in four different experiments, in laboratory and field environments. Consistent differences between these two sonic anemometers were observed. The data have revealed that the differences were strongly correlated with the wind direction. According to the datasets used, the CSAT3 was the anemometer whose measurements were more sensitive to the instrument’s orientation relative to the wind direction. While the mean wind speed and direction remained within the manufacturers’ specifications (a few percent for the wind speed and a few degrees for the wind direction), the estimates of the friction velocity from the CSAT3 differed from the R3-50 by up to 20%.

Denotes Open Access content.

Corresponding author address: Laurent Grare, Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: lgrare@ucsd.edu
Save