• Antoine, D., Guevel P. , Diesté J.-F. , Bécu G. , Louis F. , Scott A. J. , and Bardey P. , 2008: The “BOUSSOLE” buoy—A new transparent-to-swell taut mooring dedicated to marine optics: Design, tests, and performance at sea. J. Atmos. Oceanic Technol., 25, 968989, doi:10.1175/2007JTECHO563.1.

    • Search Google Scholar
    • Export Citation
  • Austin, R., 1974: The remote sensing of spectral radiance from below the ocean surface. Optical Aspects of Oceanography, N. Jerlov and E. Steemann-Nielsen, Eds., Academic Press, 317–344.

  • Bailey, S. W., and Werdell P. J. , 2006: A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ., 102, 1223, doi:10.1016/j.rse.2006.01.015.

    • Search Google Scholar
    • Export Citation
  • Bendat, J. S., and Piersol A. G. , 2000: Random Data: Analysis and Measurement Procedures. 3rd ed. John Wiley and Sons, 294 pp.

  • Bishop, J. K. B., Wood T. J. , Davis R. E. , and Sherman J. T. , 2004: Robotic observations of enhanced carbon biomass and export at 55°S during SOFeX. Science, 304, 417420, doi:10.1126/science.1087717.

    • Search Google Scholar
    • Export Citation
  • Boss, E., Swift D. , Taylor L. , Brickley P. , Zaneveld R. , Riser S. , Perry M. , and Strutton P. , 2008: Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnol. Oceanogr., 53, 21122122, doi:10.4319/lo.2008.53.5_part_2.2112.

    • Search Google Scholar
    • Export Citation
  • Clark, D. K., Gordon H. R. , Voss K. J. , Ge Y. , Broenkow W. , and Trees C. , 1997: Validation of atmospheric correction over the oceans. J. Geophys. Res., 102, 17 20917 217, doi:10.1029/96JD03345.

    • Search Google Scholar
    • Export Citation
  • Clark, D. K., and Coauthors, 2003: MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: Measurement and data analysis protocols. Special topics in ocean optics protocols and appendices, J. L. Mueller, G. S. Fargion, and C. R. McClain, Eds., Vol. VI, Ocean optics protocols for satellite ocean color sensor validation, revision 4, NASA Tech. Memo. NASA/TM-2003-211621/Rev4-Vol.VI, 3–34.

  • D’Alimonte, D., Zibordi G. , Kajiyama T. , and Cunha J. C. , 2010: Monte Carlo code for high spatial resolution ocean color simulations. Appl. Opt., 49, 49364950, doi:10.1364/AO.49.004936.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., Sherman J. T. , and Dufor J. , 2001: Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Oceanic Technol., 18, 982993, doi:10.1175/1520-0426(2001)018<0982:PAAOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Estapa, M., Buesseler K. , Boss E. , and Gerbi G. , 2013: Autonomous, high-resolution observations of particle flux in the oligotrophic ocean. Biogeosciences, 10, 55175531, doi:10.5194/bg-10-5517-2013.

    • Search Google Scholar
    • Export Citation
  • Franz, B. A., Bailey S. W. , Werdell P. J. , and McClain C. R. , 2007: Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Appl. Opt., 46, 50685082, doi:10.1364/AO.46.005068.

    • Search Google Scholar
    • Export Citation
  • Frouin, R., Lingner D. W. , Gautier C. , Baker K. S. , and Smith R. C. , 1989: A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. J. Geophys. Res., 94, 97319742, doi:10.1029/JC094iC07p09731.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2011: Systematic observation requirements for satellite-based data products for climate: 2011 update; Supplemental details to the satellite-based component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update),” WMO GCOS-154, 128 pp.

  • Gordon, H., and Clark D. , 1981: Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Appl. Opt., 20, 41754180, doi:10.1364/AO.20.004175.

    • Search Google Scholar
    • Export Citation
  • Gordon, H., and Wang M. , 1994: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt., 33, 443452, doi:10.1364/AO.33.000443.

    • Search Google Scholar
    • Export Citation
  • Hooker, S., McLean S. , Sherman J. , Small M. , Lazin G. , Zibordi G. , and Brown J. , 2002: The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), March 1999. S. B. Hooker, and E. R. Firestone, Eds., SeaWiFS Postlaunch Tech. Rep. Series, Vol. 17, NASA Tech. Memo. 2002-206892, 69 pp.

  • Hooker, S., McClain C. , and Mannino A. , 2007: NASA strategic planning document: A comprehensive plan for the long-term calibration and validation of oceanic biogeochemical satellite data. NASA Special Publ. NASA/SP-2007-214152, 31 pp.

  • IOCCG, 2011: Bio-optical sensors on Argo floats. H. Claustre, Ed., International Ocean-Colour Coordinating Group Rep. 11, 89 pp.

  • Leathers, R. A., Downes T. J. , and Mobley C. D. , 2004: Self-shading correction for oceanographic upwelling radiometers. Opt. Express, 12, 47094718, doi:10.1364/OPEX.12.004709.

    • Search Google Scholar
    • Export Citation
  • Leymarie, E., Doxaron D. , and Babin M. , 2010: Uncertainties associated to measurements of inherent optical properties in natural waters. Appl. Opt., 49, 54155436, doi:10.1364/AO.49.005415.

    • Search Google Scholar
    • Export Citation
  • Mitchell, B. G., Kahru M. , and Sherman J. , 2000: Autonomous temperature-irradiance profiler resolves the spring bloom in the Sea of Japan. Proc. 2000 Ocean Optics XV, Monte Carlo, Monaco, Oceanographic Society, 9 pp.

  • Mobley, C. D., 1994: Light and Water: Radiative Transfer in Natural Waters.Academic Press, 592 pp.

  • Morel, A., and Maritorena S. , 2001: Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 106, 71637180, doi:10.1029/2000JC000319.

    • Search Google Scholar
    • Export Citation
  • Morel, A., Antoine D. , and Gentili B. , 2002: Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt., 41, 62896306, doi:10.1364/AO.41.006289.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. L., and Coauthors, 2003a: Instrument specifications, characterization and calibration. Vol. 2, Ocean optics protocols for satellite ocean color sensor validation, revision 4, NASA Tech. Memo. NASA/TM-2003-21621/Rev-VolII, 57 pp.

  • Mueller, J. L., Austin R. , Morel A. , Fargion G. , and McClain C. , 2003b: Introduction, background and conventions. Vol. I, Ocean optics protocols for satellite ocean color sensor validation, revision 4, NASA Tech. Memo. NASA/TM-2003-21621/Rev-Vol I, 50 pp.

  • O’Reilly, J. E., Maritorena S. , Mitchell B. G. , Siegel D. A. , Carder K. L. , Garver S. A. , Kahru M. , and McClain C. R. , 1998: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24 93724 953, doi:10.1029/98JC02160.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, J. E., and Coauthors, 2000: SeaWiFS postlaunch calibration and validation analyses. J. E. Hooker and E. R. Firestone, Eds., SeaWiFS Postlaunch Tech. Rep. Series, Vol. 11, Part 3, NASA Tech. Memo. 2000-206892, 49 pp.

  • Organelli, E., and Coauthors, 2016: A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: Protocols and performances. J. Atmos. Oceanic Technol., 33, 937951, doi:10.1175/JTECH-D-15-0193.1.

    • Search Google Scholar
    • Export Citation
  • Quan, X., and Fry E. S. , 1995: Empirical equation for the index of refraction of seawater. Appl. Opt., 34, 34773480, doi:10.1364/AO.34.003477.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo Program: Observing the global oceans with profiling floats. Oceanography, 22, 3443, doi:10.5670/oceanog.2009.36.

    • Search Google Scholar
    • Export Citation
  • Stramska, M., and Dickey T. D. , 1998: Short-term variability of the underwater light field in the oligotrophic ocean in response to surface waves and clouds. Deep-Sea Res. I, 45, 13931410, doi:10.1016/S0967-0637(98)00020-X.

    • Search Google Scholar
    • Export Citation
  • Voss, K. J., and Coauthors, 2010: An example crossover experiment for testing new vicarious calibration techniques for satellite ocean color radiometry. J. Atmos. Oceanic Technol., 27, 17471759, doi:10.1175/2010JTECHO737.1.

    • Search Google Scholar
    • Export Citation
  • Waters, K. J., 1995: Effects of Raman scattering on the water-leaving radiance. J. Geophys. Res., 100, 13 15113 161, doi:10.1029/95JC00530.

    • Search Google Scholar
    • Export Citation
  • Wei, J., Lewis M. R. , Dommelen R. V. , Zappa C. J. , and Twardowski M. S. , 2014: Wave-induced light field fluctuations in measured irradiance depth profiles: A wavelet analysis. J. Geophys. Res. Oceans, 119, 13441364, doi:10.1002/2013JC009572.

    • Search Google Scholar
    • Export Citation
  • Werdell, P. J., Bailey S. W. , Franz B. A. , Morél A. , and McClain C. R. , 2007: On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model. Appl. Opt., 46, 56495666, doi:10.1364/AO.46.005649.

    • Search Google Scholar
    • Export Citation
  • Westberry, T. K., Boss E. , and Lee Z. , 2013: Influence of Raman scattering on ocean color inversion models. Appl. Opt., 52, 55525561, doi:10.1364/AO.52.005552.

    • Search Google Scholar
    • Export Citation
  • Xing, X., Morel A. , Claustre H. , D’Ortenzio F. , and Poteau A. , 2012: Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval. J. Geophys. Res., 117, C04022, doi:10.1029/2011JC007632.

    • Search Google Scholar
    • Export Citation
  • Xing, X., Claustre H. , Wang H. , Poteau A. , and D’Ortenzio F. , 2014: Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers. Deep-Sea Res. I, 83, 93101, doi:10.1016/j.dsr.2013.09.008.

    • Search Google Scholar
    • Export Citation
  • Zibordi, G., and Voss K. J. , 2014: In situ optical radiometry in the visible and near infrared. Optical Radiometry for Ocean Climate Measurements, G. Zibordi, C. J. Donlon, and A. C. Parr, Eds., Experimental Methods in the Physical Sciences, Vol. 47, Academic Press, 247–304, doi:10.1016/B978-0-12-417011-7.00010-6.

  • Zibordi, G., D’Alimonte D. , and Berthon J.-F. , 2004: An evaluation of depth resolution requirements for optical profiling in coastal waters. J. Atmos. Oceanic Technol., 21, 10591073, doi:10.1175/1520-0426(2004)021<1059:AEODRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zibordi, G., and Coauthors, 2009: AERONET-OC: A network for the validation of ocean color primary products. J. Atmos. Oceanic Technol., 26, 16341651, doi:10.1175/2009JTECHO654.1.

    • Search Google Scholar
    • Export Citation
  • Zibordi, G., and Coauthors, 2015: System vicarious calibration for ocean color climate change applications: Requirements for in situ data. Remote Sens. Environ., 159, 361369, doi:10.1016/j.rse.2014.12.015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 352 185 21
PDF Downloads 273 144 22

Validation of Ocean Color Remote Sensing Reflectance Using Autonomous Floats

View More View Less
  • 1 Skidmore College, Saratoga Springs, New York
  • | 2 University of Maine, Orono, Maine
  • | 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 4 Science Systems and Applications, Inc., Lanham, Maryland
  • | 5 Dalhousie University, Halifax, Nova Scotia, Canada
  • | 6 Satlantic, Halifax, Nova Scotia, Canada
  • | 7 WET Labs, Philomath, Oregon
  • | 8 Teledyne Webb Research, North Falmouth, Massachusetts
Restricted access

Abstract

The use of autonomous profiling floats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platform for validation of satellite-based estimates of remote sensing reflectance in the ocean is examined. This effort includes comparing quantities estimated from float and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the float estimates. This study had 65 occurrences of coincident high-quality observations from floats and MODIS Aqua and 15 occurrences of coincident high-quality observations floats and Visible Infrared Imaging Radiometer Suite (VIIRS). The float estimates of remote sensing reflectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the float–satellite comparisons is similar to the variability of in situ–satellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of float-based and satellite-based quantities, suggests that floats are likely a good platform for validation of satellite-based estimates of remote sensing reflectance.

Corresponding author address: Gregory P. Gerbi, Physics Department, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866. E-mail: ggerbi@skidmore.edu

Abstract

The use of autonomous profiling floats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platform for validation of satellite-based estimates of remote sensing reflectance in the ocean is examined. This effort includes comparing quantities estimated from float and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the float estimates. This study had 65 occurrences of coincident high-quality observations from floats and MODIS Aqua and 15 occurrences of coincident high-quality observations floats and Visible Infrared Imaging Radiometer Suite (VIIRS). The float estimates of remote sensing reflectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the float–satellite comparisons is similar to the variability of in situ–satellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of float-based and satellite-based quantities, suggests that floats are likely a good platform for validation of satellite-based estimates of remote sensing reflectance.

Corresponding author address: Gregory P. Gerbi, Physics Department, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866. E-mail: ggerbi@skidmore.edu
Save