• Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Chen, Y. J., Zhou R. J. , Shi C. H. , and Yun B. I. , 2006: Study on the trace species in the stratosphere and their impact on climate. Adv. Atmos. Sci., 23, 10201039, doi:10.1007/s00376-006-1020-3.

    • Search Google Scholar
    • Export Citation
  • Fan, Z.-Q., Sheng Z. , Wan L. , Shi H.-Q. , and Jiang Y. , 2013: Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding. Acta Phys. Sin., 62, 199601, doi:10.7498/aps.62.199601.

    • Search Google Scholar
    • Export Citation
  • Fan, Z.-Q., Sheng Z. , Shi H.-Q. , Yi X. , and Zhu E. Z. , 2015: Comparative assessment of COSMIC radio occultation data and TIMED/SABER satellite data over China. J. Appl. Meteor. Climatol., 54, 19311943, doi:10.1175/JAMC-D-14-0151.1.

    • Search Google Scholar
    • Export Citation
  • Gong, X. Y., Hu X. , Wu X. C. , and Xiao C. Y. , 2013: Comparison of temperature measurements between COSMIC atmospheric radio occultation and SABER/TIMED. Chin. J. Geophys., 56, 21522162.

    • Search Google Scholar
    • Export Citation
  • Guo, P., Kuo Y.-H. , Sokolovskiy S. V. , and Lenschow D. H. , 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Search Google Scholar
    • Export Citation
  • He, W.-Y., and Chen H.-B. , 2009: Validation of AMSU measurements in lower stratosphere using COSMIC radio occultation data: Preliminary results. Chin. J. Geophys., 52, 29512957, doi:10.3969/j.issn.0001-5733.2009.12.003.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., Goldberg M. , Kuo Y.-H. , Zou C.-Z. , and Schreiner W. , 2009: Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results. Terr. Atmos. Oceanic Sci., 20, 87100, doi:10.3319/TAO.2007.12.06.01(F3C).

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., Haynes P. H. , Mclntyre M. E. , Douglass A. R. , Rood R. B. , and Pfister L. , 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Tung K. , and Liu J. , 2005: A closer comparison of early and late-winter atmospheric trends in the Northern Hemisphere. J. Climate, 18, 29242936, doi:10.1175/JCLI3468.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Ding F. , and Xia Y. , 2009: Stratospheric climate trends under conditions of global climate changes (in Chinese). Adv. Earth Sci., 24, 242251.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., Xia Y. , and Fu Q. , 2011: Tropospheric temperature response to stratospheric ozone recovery in the 21st century. Atmos. Chem. Phys., 11, 76877699, doi:10.5194/acp-11-7687-2011.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Ji M. , Higuchi K. , and Shabbar A. , 2006a: Temporal structures of the North Atlantic Oscillation and its impact on the regional climate variability. Adv. Atmos. Sci., 23, 2332, doi:10.1007/s00376-006-0003-8.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Lin B. , Minnis P. , Wang T. , Wang X. , Hu Y. , Yi Y. , and Ayers J. K. , 2006b: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi:10.1029/2006GL026561.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., Wee T.-K. , Sokolovskiy S. , Rocken C. , Shreiner W. , Hunt D. , and Anthes R. A. , 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., Schreiner W. S. , Wang J. , Rossiter D. L. , and Zhang Y. , 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, L05817, doi:10.1029/2004GL021443.

    • Search Google Scholar
    • Export Citation
  • Lü, D., and Coauthors, 2009: Frontiers and significance of research on stratospheric processes (in Chinese). Adv. Earth Sci., 24, 221228.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and Liu H. , 1993: Upper-air temperature trends over the globe, 1956–1989. J. Climate, 6, 292307, doi:10.1175/1520-0442(1993)006<0292:UATTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observation and model simulations. Rev. Geophys., 39, 71122, doi:10.1029/1999RG000065.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, doi:10.1029/2008JD010013.

    • Search Google Scholar
    • Export Citation
  • Siskind, D. E., Coy L. , and Espy P. , 2005: Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument. Geophys. Res. Lett., 32, L09804, doi:10.1029/2005GL022399.

    • Search Google Scholar
    • Export Citation
  • Sun, B., Reale A. , Seidel D. J. , and Hunt D. C. , 2010: Comparison radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, doi:10.1029/2010JD014457.

    • Search Google Scholar
    • Export Citation
  • Tett, S., Mitchell J. , Parker D. , and Allen M. R. , 1996: Human influences on the atmospheric vertical temperature structure: Detection and observations. Science, 274, 11701173, doi:10.1126/science.274.5290.1170.

    • Search Google Scholar
    • Export Citation
  • Wang, B.-R., Liu X.-Y. , and Wang J.-K. , 2013: Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmos. Meas. Tech., 6, 10731083, doi:10.5194/amt-6-1073-2013.

    • Search Google Scholar
    • Export Citation
  • Ware, R., Rocken C. , Solheim F. , Exner M. , Schreiner W. , Anthes R. , Feng D. , and Herman B. , 1996: GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 1940, doi:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wrasse, C. M., Fechine J. , Takahashi H. , Denardini C. M. , Wickert J. , Mlynczak M. G. , Russell J. M. , and Barbosa C. L. , 2008: Temperature comparison between CHAMP radio occultation and TIMED/SABER measurement in the lower stratosphere. Adv. Space Res., 41, 14231428, doi:10.1016/j.asr.2007.06.073.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and Eckermann S. D. , 2008: Global gravity wave variances from Aura MLS: characteristics and interpretation. J. Atmos. Sci., 65, 36953718, doi:10.1175/2008JAS2489.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J. Y., Smith A. K. , Yuan W. , Liu H. L. , Wu Q. , Mlynczak M. G. , and Russell J. M. III, 2007: Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J. Geophys. Res., 112, D24106, doi:10.1029/2007JD008546.

    • Search Google Scholar
    • Export Citation
  • Yi, C., Li Z. , John C. K. , Jeffrey D. P. , and Francisco P. C. , 2003: A high-resolution surface vector wind product for coastal oceans: Blending satellite scatterometer measurements with regional mesoscale atmospheric model simulations. Geophys. Res. Lett., 30, 1013, doi:10.1029/2002GL015729.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 24 1
PDF Downloads 35 11 0

A Characterization of the Quality of the Stratospheric Temperature Distributions from SABER based on Comparisons with COSMIC Data

View More View Less
  • 1 College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China
  • | 2 College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China
  • | 4 Department of Aviation Theory, Aviation University of Air Force, Changchun, China
  • | 5 College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China
Restricted access

Abstract

Global stratospheric temperature measurement is an important field in the study of climate and weather. Dynamic and radiative coupling between the stratosphere and troposphere has been demonstrated in a number of studies over the past decade or so. However, studies of the stratosphere were hampered by a shortage of observation data before satellite technology was used in atmospheric sounding. Now, the data from the Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations make it easier to study the stratosphere. The precision and accuracy of TIMED/SABER satellite soundings in the stratosphere are analyzed in this paper using refraction error data and temperature data obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation sounding system and TIMED/SABER temperature data between April 2006 and December 2009. The results show high detection accuracy of TIMED/SABER satellite soundings in the stratosphere. The temperature standard deviation (STDV) errors of SABER are mostly in the range from of 0–3.5 K. At 40 km the STDV error is usually less than 1 K, which means that TIMED/SABER temperature is close to the real atmospheric temperature at this height. The distributions of SABER STDV errors follow a seasonal variation: they are approximately similar in the months that belong to the same season. As the weather situation is complicated and fickle, the distribution of SABER STDV errors is most complex at the equator. The results in this paper are consistent with previous research and can provide further support for application of the SABER’s temperature data.

Corresponding author address: Z. Sheng, College of Meteorology and Oceanology, PLA University of Science and Technology, 60 Shuanglong Street, Nanjing 211101, China. E-mail: 19994035@sina.com

Abstract

Global stratospheric temperature measurement is an important field in the study of climate and weather. Dynamic and radiative coupling between the stratosphere and troposphere has been demonstrated in a number of studies over the past decade or so. However, studies of the stratosphere were hampered by a shortage of observation data before satellite technology was used in atmospheric sounding. Now, the data from the Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations make it easier to study the stratosphere. The precision and accuracy of TIMED/SABER satellite soundings in the stratosphere are analyzed in this paper using refraction error data and temperature data obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation sounding system and TIMED/SABER temperature data between April 2006 and December 2009. The results show high detection accuracy of TIMED/SABER satellite soundings in the stratosphere. The temperature standard deviation (STDV) errors of SABER are mostly in the range from of 0–3.5 K. At 40 km the STDV error is usually less than 1 K, which means that TIMED/SABER temperature is close to the real atmospheric temperature at this height. The distributions of SABER STDV errors follow a seasonal variation: they are approximately similar in the months that belong to the same season. As the weather situation is complicated and fickle, the distribution of SABER STDV errors is most complex at the equator. The results in this paper are consistent with previous research and can provide further support for application of the SABER’s temperature data.

Corresponding author address: Z. Sheng, College of Meteorology and Oceanology, PLA University of Science and Technology, 60 Shuanglong Street, Nanjing 211101, China. E-mail: 19994035@sina.com
Save