• Ansmann, A., and Bösenberg J. , 1987: Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. Appl. Opt., 26, 30263032, doi:10.1364/AO.26.003026.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2007: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes. J. Atmos. Oceanic Technol., 24, 321, doi:10.1175/JTECH1924.1.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., Wulfmeyer V. , Riede A. , Wagner G. , Pal S. , Bauer H. , Radlach M. , and Späth F. , 2009: Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar. Remote Sensing of Clouds and the Atmosphere XIV, R. H. Picard et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7475), 74750L, doi:10.1117/12.835143.

  • Bevis, M., Businger S. , Herring T. A. , Rocken C. , Anthes R. A. , and Ware R. H. , 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., Businger S. , Herring T. A. , Anthes R. A. , Rocken C. , Ware R. H. , and Chiswell S. R. , 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379387, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bhawar, R., and Coauthors, 2011: The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: Airborne-to-ground-based and airborne-to-airborne lidar systems. Quart. J. Roy. Meteor. Soc., 137, 325348, doi:10.1002/qj.697.

    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., Turner D. D. , Löhnert U. , and Castleberry S. , 2015: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions. J. Appl. Meteor. Climatol., 54, 23052319, doi:10.1175/JAMC-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer Verlag, 289–295, doi:10.1007/978-3-642-60612-0_70.

  • Bruneau, D., Quaglia P. , Flamant C. , Meissonnier M. , and Pelon J. , 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description. Appl. Opt., 40, 34503475, doi:10.1364/AO.40.003450.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and Coauthors, 1996: The promise of GPS in atmospheric monitoring. Bull. Amer. Meteor. Soc., 77, 518, doi:10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., Liljegren J. C. , and Turner D. D. , 2013: The Atmospheric Radiation Measurement (ARM) Program network of microwave radiometers: Instrumentation, data and retrievals. Atmos. Meas. Tech., 6, 23592372, doi:10.5194/amt-6-2359-2013.

    • Search Google Scholar
    • Export Citation
  • Cimini, D., Hewison T. J. , Martin L. , Güldner J. , Gafford C. , and Marzano F. , 2006: Temperature and humidity profile retrievals from ground-based radiometers during TUC. Meteor. Z., 15, 4556, doi:10.1127/0941-2948/2006/0099.

    • Search Google Scholar
    • Export Citation
  • Cimini, D., and Coauthors, 2012: An international network of ground-based microwave radiometers for the assimilation of temperature and humidity profiles into NWP models. Proc. Ninth Int. Symp. on Tropospheric Profiling, European Space Agency, L’Aquila, Italy, P45. [Available online at http://cetemps.aquila.infn.it/istp/proceedings/Session_P_Posters/P45_Cimini.pdf.]

  • Clark, R., 2016: FP3 Ellis, KS radiosonde data, version. 2.0. UCAR/NCAR Earth Observing Laboratory, accessed 29 January 2016, doi:10.5065/D6GM85DZ.

  • Crewell, S., and Coauthors, 2004: The BALTEX Bridge Campaign: An integrated approach for a better understanding of clouds. Bull. Amer. Meteor. Soc., 85, 15651584, doi:10.1175/BAMS-85-10-1565.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dinoev, T., Simeonov V. , Arshinov Y. , Bobrovnikov S. , Ristori P. , Calpini B. , Parlange M. , and van den Bergh H. , 2013: Raman lidar for meteorological observations, RALMO—Part 1: Instrument description. Atmos. Meas. Tech., 6, 13291346, doi:10.5194/amt-6-1329-2013.

    • Search Google Scholar
    • Export Citation
  • Ehret, G., Kiemle C. , Renger W. , and Simmet G. , 1993: Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Appl. Opt., 32, 45344551, doi:10.1364/AO.32.004534.

    • Search Google Scholar
    • Export Citation
  • Flocke, F., and Coauthors, 2015: The Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)—An overview. 2015 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A12A-01.

  • Geerts, B., and Coauthors, 2016: The 2015 Plains Elevated Convection at Night (PECAN) field project. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00257.1, in press.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., Blair F. H. , Bisson S. E. , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and Turner D. , 2015: FP3 University of Manitoba MWR radiometrics retrieval profile data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 21 August 2015, doi:10.5065/D6KH0KCB.

  • Harnisch, F., Weissman M. , Cardinali C. , and Wirth M. , 2011: Experimental assimilation of DIAL water vapour observations in the ECMWF global model. Quart. J. Roy. Meteor. Soc., 137, 15321546, doi:10.1002/qj.851.

    • Search Google Scholar
    • Export Citation
  • Hartung, D. C., Otkin J. A. , Petersen R. A. , Turner D. D. , and Feltz W. F. , 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part II: Forecast assessment. Mon. Wea. Rev., 139, 23272346, doi:10.1175/2011MWR3623.1.

    • Search Google Scholar
    • Export Citation
  • Hayman, M., Spuler S. , Morley B. , and Eloranta E. , 2015: Design of a low cost diode-laser-based High Spectral Resolution Lidar (HSRL). Proc. 27th Int. Laser Radar Conf., New York, NY, NOAA CREST, 06006. [Available online at http://www.epj-conferences.org/articles/epjconf/pdf/2016/14/epjconf_ilrc2016_06006.pdf.]

  • Hewison, T., 2007: 1D-VAR retrievals of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens., 45, 21632168, doi:10.1109/TGRS.2007.898091.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., Cimini D. , Gaffard C. , Haeffelin M. , Lehmann V. , Löhnert U. , O’Connor E. J. , and Ruffieux D. , 2015: Exploiting existing ground-based remote sensing networks to improve high-resolution weather forecasts. Bull. Amer. Meteor. Soc., 96, 21072125, doi:10.1175/BAMS-D-13-00283.1.

    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Browell E. V. , 1989: Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt., 28, 36033615, doi:10.1364/AO.28.003603.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., Ehret G. , Giez A. , Davis K. J. , Lenschow D. H. , and Oncley S. P. , 1997: Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). J. Geophys. Res., 102, 29 18929 203, doi:10.1029/97JD01112.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: The Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, doi:10.1175/JTECH-1662.1.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: The Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, doi:10.1175/JTECH-1663.1.

    • Search Google Scholar
    • Export Citation
  • Küchler, N., Turner D. D. , Löhnert U. , and Crewell S. , 2016: Calibrating ground-based microwave radiometers: Uncertainty and drifts. Radio Sci., 51, 311327, doi:10.1002/2015RS005826.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 2004: Improved retrievals of temperature and water vapor profiles with a twelve-channel radiometer. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Seattle, WA, Amer. Meteor. Soc., 4.7. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69734.htm.]

  • Lin, P.-F., Chang P.-L. , Jou B. J.-D. , Wilson J. W. , and Roberts R. D. , 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Wea. Forecasting, 26, 4460, doi:10.1175/2010WAF2222386.1.

    • Search Google Scholar
    • Export Citation
  • Linné, H., Hennemuth B. , Bösenberg J. , and Ertel K. , 2007: Water vapour flux profiles in the convective boundary layer. Theor. Appl. Climatol., 87, 201211, doi:10.1007/s00704-005-0191-7.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and Maier O. , 2012: Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5, 11211134, doi:10.5194/amt-5-1121-2012.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., Turner D. D. , and Crewell S. , 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, doi:10.1175/2008JAMC2060.1.

    • Search Google Scholar
    • Export Citation
  • Machol, J. L., and Coauthors, 2004: Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. Appl. Opt., 43, 31103121, doi:10.1364/AO.43.003110.

    • Search Google Scholar
    • Export Citation
  • Maschwitz, G., Löhnert U. , Crewell S. , Rose T. , and Turner D. D. , 2013: Investigation of ground-based microwave radiometer calibration techniques at 530 hPa. Atmos. Meas. Tech., 6, 26412658, doi:10.5194/amt-6-2641-2013.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Wyngaard J. C. , 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci., 41, 31613169, doi:10.1175/1520-0469(1984)041<3161:SOCSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Wyngaard J. C. , 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46, 23112330, doi:10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, A. W., and Coauthors, 2015: National Weather Service forecasters use GPS precipitable water vapor for enhanced situational awareness during the Southern California summer monsoon. Bull. Amer. Meteor. Soc., 96, 18671877, doi:10.1175/BAMS-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 250 pp., doi:10.17226/12540.

  • NRC, 2010: When Weather Matters: Science and Service to Meet Critical Societal Needs. National Academies Press, 198 pp., doi:10.17226/12888.

  • NRC, 2012: Weather Services for the Nation: Becoming Second to None. National Academies Press, 86 pp., doi:10.17226/13429.

  • Nehrir, A. R., 2011: Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (MP-DIAL) for atmospheric water-vapor and aerosol studies. Ph.D. thesis, Montana State University, 270 pp.

  • Nehrir, A. R., Repasky K. S. , Carlsten J. L. , Obland M. D. , and Shaw J. A. , 2009: Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 26, 733745, doi:10.1175/2008JTECHA1201.1.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., Repasky K. S. , and Carlsten J. L. , 2011: Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere. J. Atmos. Oceanic Technol., 28, 131147, doi:10.1175/2010JTECHA1452.1.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., Repasky K. S. , and Carlsten J. L. , 2012: Micropulse water vapor differential absorption lidar: Transmitter design and performance. Opt. Express, 20, 25 13725 151, doi:10.1364/OE.20.025137.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Hartung D. C. , Turner D. D. , Petersen R. A. , Feltz W. F. , and Janzon E. , 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Wea. Rev., 139, 23092326, doi:10.1175/2011MWR3622.1.

    • Search Google Scholar
    • Export Citation
  • Paine, S. N., Turner D. D. , and Küchler N. , 2014: Understanding thermal drift in liquid nitrogen loads used for radiometric calibration in the field. J. Atmos. Oceanic Technol., 31, 647655, doi:10.1175/JTECH-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., Sullivan P. P. , and Davis K. J. , 2003: The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 129, 14151434, doi:10.1256/qj.01.175.

    • Search Google Scholar
    • Export Citation
  • Poberaj, G., Fix A. , Assion A. , Wirth M. , Kiemle C. , and Ehret G. , 2002: Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: System description and assessment of accuracy. Appl. Phys., 75B, 165172, doi:10.1007/s00340-002-0965-x.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., Wandinger U. , Klein V. , Mattis I. , Hilber B. , and Begbie R. , 2012: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt., 51, 81118131, doi:10.1364/AO.51.008111.

    • Search Google Scholar
    • Export Citation
  • Repasky, K., Moen D. , Spuler S. , Nehrir A. , and Carlsten J. , 2013: Progress towards an autonomous field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor in the lower troposphere. Remote Sens., 5, 62416259, doi:10.3390/rs5126241.

    • Search Google Scholar
    • Export Citation
  • Senff, C., Bösenberg J. , and Peters G. , 1994: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar–RASS. J. Atmos. Oceanic Technol., 11, 8593, doi:10.1175/1520-0426(1994)011<0085:MOWVFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solheim, F., Godwin J. , Westwater E. , Han Y. , Keihm S. , Marsh K. , and Ware R. , 1998: Radiometric profiling of temperature, water vapor, and cloud liquid water using various inversion methods. Radio Sci., 33, 393404, doi:10.1029/97RS03656.

    • Search Google Scholar
    • Export Citation
  • Späth, F., Behrendt A. , Kumar Muppa S. , Metzendorf S. , Riede A. , and Wulfmeyer V. , 2016: 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar. Atmos. Meas. Tech., 9, 17011720, doi:10.5194/amt-9-1701-2016.

    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., Repasky K. S. , Morley B. , Moen D. , Hayman M. , and Nehrir A. R. , 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 10731087, doi:10.5194/amt-8-1073-2015.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2015: FP3 AERIoe thermodynamic profile retrieval data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 25 April 2016, doi:10.5065/D6Z31WV0.

  • Turner, D. D., and Goldsmith J. E. M. , 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, doi:10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Löhnert U. , 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Ellingson R. G. , Eds., 2016: The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years. Meteor. Monogr., No. 57, Amer. Meteor. Soc.

  • Turner, D. D., Knuteson R. O. , Revercomb H. E. , Lo C. , and Dedecker R. G. , 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238, doi:10.1175/JTECH1906.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Wulfmeyer V. , Berg L. K. , and Schween J. H. , 2014: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 11 15111 165, doi:10.1002/2014JD022202.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Goldsmith J. E. M. , and Ferrare R. A. , 2016a: Development and applications of the ARM Raman lidar. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., 18-1–18.15, doi:10.1175/AMSMONOGRAPHS-D-15-0016.1.

  • Turner, D. D., Mlawer E. J. , and Revercomb H. E. , 2016b: Water vapor observations in the ARM Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., 13.1–13.18, doi:10.1175/AMSMONOGRAPHS-D-15-0025.1.

  • UCAR/NCAR EOL, 2016a: FP3 NCAR/EOL water vapor DIAL, QC data in netCDF, version 2.0. UCAR/NCAR Earth Observing Laboratory, accessed 29 April 2016, doi:10.5065/D6SJ1HR1.

  • UCAR/NCAR EOL, 2016b: NCAR/EOL water vapor DIAL, QC data in netCDF, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 29 April 2016, doi:10.5065/D65B00NF.

  • Van Baelen, J., Reverdy M. , Tridon F. , Labbouz L. , Dick G. , Bender M. , and Hagen M. , 2011: On the relationship between water vapour field evolution and the life cycle of precipitation systems. Quart. J. Roy. Meteor. Soc., 137, 204223, doi:10.1002/qj.785.

    • Search Google Scholar
    • Export Citation
  • Vogelmann, H., and Trickl T. , 2008: Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high altitude station. Appl. Opt., 47, 21162132, doi:10.1364/AO.47.002116.

    • Search Google Scholar
    • Export Citation
  • Wagner, G., Wulfmeyer V. , Späth F. , Behrendt A. , and Schiller M. , 2013: High-power Ti:sapphire laser at 820 nm for scanning ground-based water–vapor differential absorption lidar. Appl. Opt., 52, 24542469, doi:10.1364/AO.52.002454.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Zhang L. , Dai A. , Immler F. , Sommer M. , and Vömel H. , 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, doi:10.1175/JTECH-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, doi:10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wilson J. W. , and Wakimoto R. M. , 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wulfmeyer V. , Wakimoto R. M. , Hardesty R. M. , Wilson J. W. , and Banta R. M. , 1999: NCAR–NOAA Lower-Tropospheric Water Vapor Workshop. Bull. Amer. Meteor. Soc., 80, 23392357, doi:10.1175/1520-0477(1999)080<2339:NNLTWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Bennett L. J. , Miller L. J. , Van Baelen J. , Di Girolamo P. , Blyth A. M. , and Hertneky T. J. , 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 26872708, doi:10.1175/MWR-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999: Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar–RASS. J. Atmos. Sci., 56, 10551076, doi:10.1175/1520-0469(1999)056<1055:IOTPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Bösenberg J. , 1998: Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution and meteorological applications. Appl. Opt., 37, 38253844, doi:10.1364/AO.37.003825.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Walther C. , 2001a: Future performance of ground-based and airborne water-vapor differential absorption lidar. I: Overview and theory. Appl. Opt., 40, 53045320, doi:10.1364/AO.40.005304.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Walther C. , 2001b: Future performance of ground-based and airborne water-vapor differential absorption lidar. II: Simulations of the precision of a near-infrared, high-power system. Appl. Opt., 40, 53215336, doi:10.1364/AO.40.005321.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Bauer H.-S. , Grzeschik M. , Behrendt A. , Vandenberghe F. , Browell E. V. , Ismail S. , and Ferrare R. A. , 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134, 209230, doi:10.1175/MWR3070.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensible role for understanding and simulation of water and energy cycles. Rev. Geophys., 53, 819895, doi:10.1002/2014RG000476.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Kumar Muppa S. , Behrendt A. , Hammann E. , Späth F. , Sorbjan Z. , Turner D. D. , and Hardesty R. M. , 2016: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy. J. Atmos. Sci., 73, 667692, doi:10.1175/JAS-D-14-0392.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and Brost R. A. , 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, doi:10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 695 347 36
PDF Downloads 531 286 58

Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL)

View More View Less
  • 1 Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 2 National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

A water vapor micropulse differential absorption lidar (DIAL) instrument was developed collaboratively by the National Center for Atmospheric Research (NCAR) and Montana State University (MSU). This innovative, eye-safe, low-power, diode-laser-based system has demonstrated the ability to obtain unattended continuous observations in both day and night. Data comparisons with well-established water vapor observing systems, including radiosondes, Atmospheric Emitted Radiance Interferometers (AERIs), microwave radiometer profilers (MWRPs), and ground-based global positioning system (GPS) receivers, show excellent agreement. The Pearson’s correlation coefficient for the DIAL and radiosondes is consistently greater than 0.6 from 300 m up to 4.5 km AGL at night and up to 3.5 km AGL during the day. The Pearson’s correlation coefficient for the DIAL and AERI is greater than 0.6 from 300 m up to 2.25 km at night and from 300 m up to 2.0 km during the day. Further comparison with the continuously operating GPS instrumentation illustrates consistent temporal trends when integrating the DIAL measurements up to 6 km AGL.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Current affiliation: Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Tammy Weckwerth, Earth Observing Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80303. E-mail: tammy@ucar.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

A water vapor micropulse differential absorption lidar (DIAL) instrument was developed collaboratively by the National Center for Atmospheric Research (NCAR) and Montana State University (MSU). This innovative, eye-safe, low-power, diode-laser-based system has demonstrated the ability to obtain unattended continuous observations in both day and night. Data comparisons with well-established water vapor observing systems, including radiosondes, Atmospheric Emitted Radiance Interferometers (AERIs), microwave radiometer profilers (MWRPs), and ground-based global positioning system (GPS) receivers, show excellent agreement. The Pearson’s correlation coefficient for the DIAL and radiosondes is consistently greater than 0.6 from 300 m up to 4.5 km AGL at night and up to 3.5 km AGL during the day. The Pearson’s correlation coefficient for the DIAL and AERI is greater than 0.6 from 300 m up to 2.25 km at night and from 300 m up to 2.0 km during the day. Further comparison with the continuously operating GPS instrumentation illustrates consistent temporal trends when integrating the DIAL measurements up to 6 km AGL.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Current affiliation: Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Tammy Weckwerth, Earth Observing Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80303. E-mail: tammy@ucar.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save