Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL)

Tammy M. Weckwerth Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Tammy M. Weckwerth in
Current site
Google Scholar
PubMed
Close
,
Kristy J. Weber Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kristy J. Weber in
Current site
Google Scholar
PubMed
Close
,
David D. Turner National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
, and
Scott M. Spuler Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Scott M. Spuler in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A water vapor micropulse differential absorption lidar (DIAL) instrument was developed collaboratively by the National Center for Atmospheric Research (NCAR) and Montana State University (MSU). This innovative, eye-safe, low-power, diode-laser-based system has demonstrated the ability to obtain unattended continuous observations in both day and night. Data comparisons with well-established water vapor observing systems, including radiosondes, Atmospheric Emitted Radiance Interferometers (AERIs), microwave radiometer profilers (MWRPs), and ground-based global positioning system (GPS) receivers, show excellent agreement. The Pearson’s correlation coefficient for the DIAL and radiosondes is consistently greater than 0.6 from 300 m up to 4.5 km AGL at night and up to 3.5 km AGL during the day. The Pearson’s correlation coefficient for the DIAL and AERI is greater than 0.6 from 300 m up to 2.25 km at night and from 300 m up to 2.0 km during the day. Further comparison with the continuously operating GPS instrumentation illustrates consistent temporal trends when integrating the DIAL measurements up to 6 km AGL.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Current affiliation: Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Tammy Weckwerth, Earth Observing Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80303. E-mail: tammy@ucar.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

A water vapor micropulse differential absorption lidar (DIAL) instrument was developed collaboratively by the National Center for Atmospheric Research (NCAR) and Montana State University (MSU). This innovative, eye-safe, low-power, diode-laser-based system has demonstrated the ability to obtain unattended continuous observations in both day and night. Data comparisons with well-established water vapor observing systems, including radiosondes, Atmospheric Emitted Radiance Interferometers (AERIs), microwave radiometer profilers (MWRPs), and ground-based global positioning system (GPS) receivers, show excellent agreement. The Pearson’s correlation coefficient for the DIAL and radiosondes is consistently greater than 0.6 from 300 m up to 4.5 km AGL at night and up to 3.5 km AGL during the day. The Pearson’s correlation coefficient for the DIAL and AERI is greater than 0.6 from 300 m up to 2.25 km at night and from 300 m up to 2.0 km during the day. Further comparison with the continuously operating GPS instrumentation illustrates consistent temporal trends when integrating the DIAL measurements up to 6 km AGL.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Current affiliation: Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado.

Corresponding author address: Tammy Weckwerth, Earth Observing Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80303. E-mail: tammy@ucar.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save
  • Ansmann, A., and Bösenberg J. , 1987: Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. Appl. Opt., 26, 30263032, doi:10.1364/AO.26.003026.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2007: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes. J. Atmos. Oceanic Technol., 24, 321, doi:10.1175/JTECH1924.1.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., Wulfmeyer V. , Riede A. , Wagner G. , Pal S. , Bauer H. , Radlach M. , and Späth F. , 2009: Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar. Remote Sensing of Clouds and the Atmosphere XIV, R. H. Picard et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7475), 74750L, doi:10.1117/12.835143.

  • Bevis, M., Businger S. , Herring T. A. , Rocken C. , Anthes R. A. , and Ware R. H. , 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., Businger S. , Herring T. A. , Anthes R. A. , Rocken C. , Ware R. H. , and Chiswell S. R. , 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379387, doi:10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bhawar, R., and Coauthors, 2011: The water vapour intercomparison effort in the framework of the Convective and Orographically-induced Precipitation Study: Airborne-to-ground-based and airborne-to-airborne lidar systems. Quart. J. Roy. Meteor. Soc., 137, 325348, doi:10.1002/qj.697.

    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., Turner D. D. , Löhnert U. , and Castleberry S. , 2015: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions. J. Appl. Meteor. Climatol., 54, 23052319, doi:10.1175/JAMC-D-15-0005.1.

    • Search Google Scholar
    • Export Citation
  • Browell, E. V., and Coauthors, 1997: LASE validation experiment. Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann et al., Eds., Springer Verlag, 289–295, doi:10.1007/978-3-642-60612-0_70.

  • Bruneau, D., Quaglia P. , Flamant C. , Meissonnier M. , and Pelon J. , 2001: Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description. Appl. Opt., 40, 34503475, doi:10.1364/AO.40.003450.

    • Search Google Scholar
    • Export Citation
  • Businger, S., and Coauthors, 1996: The promise of GPS in atmospheric monitoring. Bull. Amer. Meteor. Soc., 77, 518, doi:10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., Liljegren J. C. , and Turner D. D. , 2013: The Atmospheric Radiation Measurement (ARM) Program network of microwave radiometers: Instrumentation, data and retrievals. Atmos. Meas. Tech., 6, 23592372, doi:10.5194/amt-6-2359-2013.

    • Search Google Scholar
    • Export Citation
  • Cimini, D., Hewison T. J. , Martin L. , Güldner J. , Gafford C. , and Marzano F. , 2006: Temperature and humidity profile retrievals from ground-based radiometers during TUC. Meteor. Z., 15, 4556, doi:10.1127/0941-2948/2006/0099.

    • Search Google Scholar
    • Export Citation
  • Cimini, D., and Coauthors, 2012: An international network of ground-based microwave radiometers for the assimilation of temperature and humidity profiles into NWP models. Proc. Ninth Int. Symp. on Tropospheric Profiling, European Space Agency, L’Aquila, Italy, P45. [Available online at http://cetemps.aquila.infn.it/istp/proceedings/Session_P_Posters/P45_Cimini.pdf.]

  • Clark, R., 2016: FP3 Ellis, KS radiosonde data, version. 2.0. UCAR/NCAR Earth Observing Laboratory, accessed 29 January 2016, doi:10.5065/D6GM85DZ.

  • Crewell, S., and Coauthors, 2004: The BALTEX Bridge Campaign: An integrated approach for a better understanding of clouds. Bull. Amer. Meteor. Soc., 85, 15651584, doi:10.1175/BAMS-85-10-1565.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dinoev, T., Simeonov V. , Arshinov Y. , Bobrovnikov S. , Ristori P. , Calpini B. , Parlange M. , and van den Bergh H. , 2013: Raman lidar for meteorological observations, RALMO—Part 1: Instrument description. Atmos. Meas. Tech., 6, 13291346, doi:10.5194/amt-6-1329-2013.

    • Search Google Scholar
    • Export Citation
  • Ehret, G., Kiemle C. , Renger W. , and Simmet G. , 1993: Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Appl. Opt., 32, 45344551, doi:10.1364/AO.32.004534.

    • Search Google Scholar
    • Export Citation
  • Flocke, F., and Coauthors, 2015: The Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)—An overview. 2015 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A12A-01.

  • Geerts, B., and Coauthors, 2016: The 2015 Plains Elevated Convection at Night (PECAN) field project. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00257.1, in press.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., Blair F. H. , Bisson S. E. , and Turner D. D. , 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J., and Turner D. , 2015: FP3 University of Manitoba MWR radiometrics retrieval profile data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 21 August 2015, doi:10.5065/D6KH0KCB.

  • Harnisch, F., Weissman M. , Cardinali C. , and Wirth M. , 2011: Experimental assimilation of DIAL water vapour observations in the ECMWF global model. Quart. J. Roy. Meteor. Soc., 137, 15321546, doi:10.1002/qj.851.

    • Search Google Scholar
    • Export Citation
  • Hartung, D. C., Otkin J. A. , Petersen R. A. , Turner D. D. , and Feltz W. F. , 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part II: Forecast assessment. Mon. Wea. Rev., 139, 23272346, doi:10.1175/2011MWR3623.1.

    • Search Google Scholar
    • Export Citation
  • Hayman, M., Spuler S. , Morley B. , and Eloranta E. , 2015: Design of a low cost diode-laser-based High Spectral Resolution Lidar (HSRL). Proc. 27th Int. Laser Radar Conf., New York, NY, NOAA CREST, 06006. [Available online at http://www.epj-conferences.org/articles/epjconf/pdf/2016/14/epjconf_ilrc2016_06006.pdf.]

  • Hewison, T., 2007: 1D-VAR retrievals of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens., 45, 21632168, doi:10.1109/TGRS.2007.898091.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., Cimini D. , Gaffard C. , Haeffelin M. , Lehmann V. , Löhnert U. , O’Connor E. J. , and Ruffieux D. , 2015: Exploiting existing ground-based remote sensing networks to improve high-resolution weather forecasts. Bull. Amer. Meteor. Soc., 96, 21072125, doi:10.1175/BAMS-D-13-00283.1.

    • Search Google Scholar
    • Export Citation
  • Ismail, S., and Browell E. V. , 1989: Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt., 28, 36033615, doi:10.1364/AO.28.003603.

    • Search Google Scholar
    • Export Citation
  • Kiemle, C., Ehret G. , Giez A. , Davis K. J. , Lenschow D. H. , and Oncley S. P. , 1997: Estimation of boundary layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). J. Geophys. Res., 102, 29 18929 203, doi:10.1029/97JD01112.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: The Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, doi:10.1175/JTECH-1662.1.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: The Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, doi:10.1175/JTECH-1663.1.

    • Search Google Scholar
    • Export Citation
  • Küchler, N., Turner D. D. , Löhnert U. , and Crewell S. , 2016: Calibrating ground-based microwave radiometers: Uncertainty and drifts. Radio Sci., 51, 311327, doi:10.1002/2015RS005826.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 2004: Improved retrievals of temperature and water vapor profiles with a twelve-channel radiometer. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Seattle, WA, Amer. Meteor. Soc., 4.7. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69734.htm.]

  • Lin, P.-F., Chang P.-L. , Jou B. J.-D. , Wilson J. W. , and Roberts R. D. , 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Wea. Forecasting, 26, 4460, doi:10.1175/2010WAF2222386.1.

    • Search Google Scholar
    • Export Citation
  • Linné, H., Hennemuth B. , Bösenberg J. , and Ertel K. , 2007: Water vapour flux profiles in the convective boundary layer. Theor. Appl. Climatol., 87, 201211, doi:10.1007/s00704-005-0191-7.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and Maier O. , 2012: Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5, 11211134, doi:10.5194/amt-5-1121-2012.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., Turner D. D. , and Crewell S. , 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, doi:10.1175/2008JAMC2060.1.

    • Search Google Scholar
    • Export Citation
  • Machol, J. L., and Coauthors, 2004: Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. Appl. Opt., 43, 31103121, doi:10.1364/AO.43.003110.

    • Search Google Scholar
    • Export Citation
  • Maschwitz, G., Löhnert U. , Crewell S. , Rose T. , and Turner D. D. , 2013: Investigation of ground-based microwave radiometer calibration techniques at 530 hPa. Atmos. Meas. Tech., 6, 26412658, doi:10.5194/amt-6-2641-2013.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Wyngaard J. C. , 1984: Statistics of conservative scalars in the convective boundary layer. J. Atmos. Sci., 41, 31613169, doi:10.1175/1520-0469(1984)041<3161:SOCSIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and Wyngaard J. C. , 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46, 23112330, doi:10.1175/1520-0469(1989)046<2311:EOTTAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, A. W., and Coauthors, 2015: National Weather Service forecasters use GPS precipitable water vapor for enhanced situational awareness during the Southern California summer monsoon. Bull. Amer. Meteor. Soc., 96, 18671877, doi:10.1175/BAMS-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 250 pp., doi:10.17226/12540.

  • NRC, 2010: When Weather Matters: Science and Service to Meet Critical Societal Needs. National Academies Press, 198 pp., doi:10.17226/12888.

  • NRC, 2012: Weather Services for the Nation: Becoming Second to None. National Academies Press, 86 pp., doi:10.17226/13429.

  • Nehrir, A. R., 2011: Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (MP-DIAL) for atmospheric water-vapor and aerosol studies. Ph.D. thesis, Montana State University, 270 pp.

  • Nehrir, A. R., Repasky K. S. , Carlsten J. L. , Obland M. D. , and Shaw J. A. , 2009: Water vapor profiling using a widely tunable, amplified diode-laser-based differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 26, 733745, doi:10.1175/2008JTECHA1201.1.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., Repasky K. S. , and Carlsten J. L. , 2011: Eye-safe diode-laser-based micropulse differential absorption lidar (DIAL) for water vapor profiling in the lower troposphere. J. Atmos. Oceanic Technol., 28, 131147, doi:10.1175/2010JTECHA1452.1.

    • Search Google Scholar
    • Export Citation
  • Nehrir, A. R., Repasky K. S. , and Carlsten J. L. , 2012: Micropulse water vapor differential absorption lidar: Transmitter design and performance. Opt. Express, 20, 25 13725 151, doi:10.1364/OE.20.025137.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., Hartung D. C. , Turner D. D. , Petersen R. A. , Feltz W. F. , and Janzon E. , 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Wea. Rev., 139, 23092326, doi:10.1175/2011MWR3622.1.

    • Search Google Scholar
    • Export Citation
  • Paine, S. N., Turner D. D. , and Küchler N. , 2014: Understanding thermal drift in liquid nitrogen loads used for radiometric calibration in the field. J. Atmos. Oceanic Technol., 31, 647655, doi:10.1175/JTECH-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., Sullivan P. P. , and Davis K. J. , 2003: The influence of a forest canopy on top-down and bottom-up diffusion in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 129, 14151434, doi:10.1256/qj.01.175.

    • Search Google Scholar
    • Export Citation
  • Poberaj, G., Fix A. , Assion A. , Wirth M. , Kiemle C. , and Ehret G. , 2002: Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: System description and assessment of accuracy. Appl. Phys., 75B, 165172, doi:10.1007/s00340-002-0965-x.

    • Search Google Scholar
    • Export Citation
  • Reichardt, J., Wandinger U. , Klein V. , Mattis I. , Hilber B. , and Begbie R. , 2012: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt., 51, 81118131, doi:10.1364/AO.51.008111.

    • Search Google Scholar
    • Export Citation
  • Repasky, K., Moen D. , Spuler S. , Nehrir A. , and Carlsten J. , 2013: Progress towards an autonomous field deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor in the lower troposphere. Remote Sens., 5, 62416259, doi:10.3390/rs5126241.

    • Search Google Scholar
    • Export Citation
  • Senff, C., Bösenberg J. , and Peters G. , 1994: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar–RASS. J. Atmos. Oceanic Technol., 11, 8593, doi:10.1175/1520-0426(1994)011<0085:MOWVFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Solheim, F., Godwin J. , Westwater E. , Han Y. , Keihm S. , Marsh K. , and Ware R. , 1998: Radiometric profiling of temperature, water vapor, and cloud liquid water using various inversion methods. Radio Sci., 33, 393404, doi:10.1029/97RS03656.

    • Search Google Scholar
    • Export Citation
  • Späth, F., Behrendt A. , Kumar Muppa S. , Metzendorf S. , Riede A. , and Wulfmeyer V. , 2016: 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar. Atmos. Meas. Tech., 9, 17011720, doi:10.5194/amt-9-1701-2016.

    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., Repasky K. S. , Morley B. , Moen D. , Hayman M. , and Nehrir A. R. , 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech., 8, 10731087, doi:10.5194/amt-8-1073-2015.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2015: FP3 AERIoe thermodynamic profile retrieval data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 25 April 2016, doi:10.5065/D6Z31WV0.

  • Turner, D. D., and Goldsmith J. E. M. , 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, doi:10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Löhnert U. , 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Ellingson R. G. , Eds., 2016: The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years. Meteor. Monogr., No. 57, Amer. Meteor. Soc.

  • Turner, D. D., Knuteson R. O. , Revercomb H. E. , Lo C. , and Dedecker R. G. , 2006: Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis. J. Atmos. Oceanic Technol., 23, 12231238, doi:10.1175/JTECH1906.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Wulfmeyer V. , Berg L. K. , and Schween J. H. , 2014: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 11 15111 165, doi:10.1002/2014JD022202.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Goldsmith J. E. M. , and Ferrare R. A. , 2016a: Development and applications of the ARM Raman lidar. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., 18-1–18.15, doi:10.1175/AMSMONOGRAPHS-D-15-0016.1.

  • Turner, D. D., Mlawer E. J. , and Revercomb H. E. , 2016b: Water vapor observations in the ARM Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., 13.1–13.18, doi:10.1175/AMSMONOGRAPHS-D-15-0025.1.

  • UCAR/NCAR EOL, 2016a: FP3 NCAR/EOL water vapor DIAL, QC data in netCDF, version 2.0. UCAR/NCAR Earth Observing Laboratory, accessed 29 April 2016, doi:10.5065/D6SJ1HR1.

  • UCAR/NCAR EOL, 2016b: NCAR/EOL water vapor DIAL, QC data in netCDF, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 29 April 2016, doi:10.5065/D65B00NF.

  • Van Baelen, J., Reverdy M. , Tridon F. , Labbouz L. , Dick G. , Bender M. , and Hagen M. , 2011: On the relationship between water vapour field evolution and the life cycle of precipitation systems. Quart. J. Roy. Meteor. Soc., 137, 204223, doi:10.1002/qj.785.

    • Search Google Scholar
    • Export Citation
  • Vogelmann, H., and Trickl T. , 2008: Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high altitude station. Appl. Opt., 47, 21162132, doi:10.1364/AO.47.002116.

    • Search Google Scholar
    • Export Citation
  • Wagner, G., Wulfmeyer V. , Späth F. , Behrendt A. , and Schiller M. , 2013: High-power Ti:sapphire laser at 820 nm for scanning ground-based water–vapor differential absorption lidar. Appl. Opt., 52, 24542469, doi:10.1364/AO.52.002454.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Zhang L. , Dai A. , Immler F. , Sommer M. , and Vömel H. , 2013: Radiation dry bias correction of Vaisala RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, doi:10.1175/JTECH-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, doi:10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wilson J. W. , and Wakimoto R. M. , 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Wulfmeyer V. , Wakimoto R. M. , Hardesty R. M. , Wilson J. W. , and Banta R. M. , 1999: NCAR–NOAA Lower-Tropospheric Water Vapor Workshop. Bull. Amer. Meteor. Soc., 80, 23392357, doi:10.1175/1520-0477(1999)080<2339:NNLTWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Bennett L. J. , Miller L. J. , Van Baelen J. , Di Girolamo P. , Blyth A. M. , and Hertneky T. J. , 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 26872708, doi:10.1175/MWR-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999: Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar–RASS. J. Atmos. Sci., 56, 10551076, doi:10.1175/1520-0469(1999)056<1055:IOTPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Bösenberg J. , 1998: Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution and meteorological applications. Appl. Opt., 37, 38253844, doi:10.1364/AO.37.003825.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Walther C. , 2001a: Future performance of ground-based and airborne water-vapor differential absorption lidar. I: Overview and theory. Appl. Opt., 40, 53045320, doi:10.1364/AO.40.005304.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Walther C. , 2001b: Future performance of ground-based and airborne water-vapor differential absorption lidar. II: Simulations of the precision of a near-infrared, high-power system. Appl. Opt., 40, 53215336, doi:10.1364/AO.40.005321.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Bauer H.-S. , Grzeschik M. , Behrendt A. , Vandenberghe F. , Browell E. V. , Ismail S. , and Ferrare R. A. , 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134, 209230, doi:10.1175/MWR3070.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensible role for understanding and simulation of water and energy cycles. Rev. Geophys., 53, 819895, doi:10.1002/2014RG000476.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., Kumar Muppa S. , Behrendt A. , Hammann E. , Späth F. , Sorbjan Z. , Turner D. D. , and Hardesty R. M. , 2016: Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy. J. Atmos. Sci., 73, 667692, doi:10.1175/JAS-D-14-0392.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and Brost R. A. , 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41, 102112, doi:10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4722 3061 1043
PDF Downloads 933 139 6