• Argo Data Management Team, 2012: Argo quality control manual, version 2.7. Argo Data Management, 47 pp. [Available online at http://www.argodatamgt.org/content/download/341/2650/file/argo-quality-control-manual-V2.7.pdf.]

  • Argo Science Team, 2012: Fourth Argo Science Workshop Meeting and final round table summary. UCSD Rep., 9 pp. [Available online at http://www.argo.ucsd.edu/ASW4_report.pdf.]

  • Argo Steering Team, 2011: 12th Meeting of the International Argo Steering Team, Buenos Aires, Argentina. UCSD Rep. 120 pp. [Available online at http://www.argo.ucsd.edu/iast12.pdf.]

  • Argo Steering Team, 2013: 14th Meeting of the International Argo Steering Team, Wellington, New Zealand. UCSD Rep., 121 pp. [Available online at http://www.argo.ucsd.edu/iast14.pdf.]

  • Barker, P. M., Dunn J. R. , Domingues C. M. , and Wijffels S. E. , 2011: Pressure sensor drifts in Argo and their impacts. J. Atmos. Oceanic Technol., 28, 10361049, doi:10.1175/2011JTECHO831.1.

    • Search Google Scholar
    • Export Citation
  • Böhme, L., and Send U. , 2005: Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep-Sea Res. II, 52, 651664, doi:10.1016/j.dsr2.2004.12.014.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009. NOAA Atlas NESDIS 66, 216 pp. [Available online at http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html.]

  • Boyer, T. P., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp. [Available online at http://www.nodc.noaa.gov/OC5/WOD13/.]

  • Bretherton, F. P., Davis R. E. , and Fandry C. B. , 1976: A technique for objective analysis and design of oceanic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Search Google Scholar
    • Export Citation
  • Carter, E. F., and Robinson A. R. , 1987: Analysis model for the estimation of oceanic fields. J. Atmos. Oceanic Technol., 4, 4974, doi:10.1175/1520-0426(1987)004<0049:AMFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-L., and Oey L.-Y. , 2011: Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide-gauge data. Geophys. Res. Lett., 38, L08603, doi:10.1029/2011GL047062.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., Chelton D. , Le Traon P.-Y. , and Morrow R. , 2010: Eddy dynamics from satellite altimetry. Oceanography, 23, 1425, doi:10.5670/oceanog.2010.02.

    • Search Google Scholar
    • Export Citation
  • Gaillard, F., Autret E. , Thierry V. , Galaup P. , Coatanoan C. , and Loubrieu T. , 2009: Quality control of large Argo datasets. J. Atmos. Oceanic Technol., 26, 337351, doi:10.1175/2008JTECHO552.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., Boyer T. P. , Garcia H. E. , Locarnini R. A. , Baranova O. K. , and Zweng M. M. , 2013: World Ocean Database 2013 user’s manual. S. Levitus, Ed., A. Mishonov, Tech. Ed., NODC Internal Rep. 22, NOAA Printing Office, 172 pp., doi:10.7289/V5DF6P53.

  • Kobashi, F., Mitsudera H. , and Xie S.-P. , 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogenesis. J. Geophys. Res., 111, C09033, doi:10.1029/2006JC003479.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp. [Available online at http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.]

  • Manzella, G. M. R., and Gambetta M. , 2013: Implementation of real-time quality control procedures by means of probabilistic estimate of sea temperature and its temporal evolution. J. Atmos. Oceanic Technol., 30, 609625, doi:10.1175/JTECH-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Montanari, G., Rinaldi A. , Pinardi N. , Simoncelli S. , and Giacomelli L. , 2006: The Currents of Emilia-Romagna Coastal Strip during the Period 1995-2002. ARPA, 160 pp.

  • Oka, E., 2005: Long-term sensor drift found in recovered Argo profiling floats. J. Oceanogr., 61, 775781, doi:10.1007/s10872-005-0083-6.

    • Search Google Scholar
    • Export Citation
  • Owens, W. B., and Wong A. P. S. , 2009: An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θS climatology. Deep-Sea Res. I, 56, 450457, doi:10.1016/j.dsr.2008.09.008.

    • Search Google Scholar
    • Export Citation
  • Park, J. J., and Kim K. , 2013: Deep currents obtained from Argo float trajectories in the Japan/East Sea. Deep-Sea Res. II, 85, 169181, doi:10.1016/j.dsr2.2012.07.032.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and Chen S. , 2010: Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213225, doi:10.1175/2009JPO4285.1.

    • Search Google Scholar
    • Export Citation
  • Schmid, C., 2005: Impact of combining temperature profiles from different instruments on an analysis of mixed layer properties. J. Atmos. Oceanic Technol., 22, 15711587, doi:10.1175/JTECH1785.1.

    • Search Google Scholar
    • Export Citation
  • Storto, A., and Masina S. , 2014: The new CMCC global ocean eddy-permitting reanalysis (1979-2012): Improvements with respect to the previous version. GEMINA Project Internal Rep., Centro Euro-Mediterraneo sui Cambiamenti Climatici, 9 pp.

  • Takahashi, T., and Coauthors, 2002: Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 16011622, doi:10.1016/S0967-0645(02)00003-6.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P. S., Johnson G. C. , and Owens W. B. , 2003: Delayed-mode calibration of autonomous CTD profiling float salinity data by θS climatology. J. Atmos. Oceanic Technol., 20, 308318, doi:10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and Weller R. A. , 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539, doi:10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Xu J. , Bao X. , and Wang Z. , 2013: An effective method for improving the accuracy of Argo objective analysis. Acta Oceanol. Sin., 32, 6677, doi:10.1007/s13131-013-0333-1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., Lee T. N. , Johns W. E. , Liu C.-T. , and Zantopp R. , 2001: The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies. J. Phys. Oceanogr., 31, 10541074, doi:10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp. [Available online at http://www.nodc.noaa.gov/OC5/indprod.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1

A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region

View More View Less
  • 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China, and Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
  • | 2 Istituto Nazionale di Geofisica e Vulcanologia, and Department of Physics and Astronomy, University of Bologna, Bologna, Italy
  • | 3 Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
  • | 4 Centro Euro-Mediterraneo sui Cambiamenti Climatici, Bologna, Italy
  • | 5 Centro Euro-Mediterraneo sui Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
Restricted access

Abstract

A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper describes and shows the impact of climatological checks (collective QC) on the quality of both processed profiles and resultant climatological distributions. Objective analysis (OA) is applied progressively to produce the gridded climatological fields. The method uses horizontal regional climatological averages defined in five regime-oriented subregions in the Kuroshio area and the Japan Sea. Performing the QC procedure on specific coherent subregions produces improved profiling data and climatological fields because more details about the local hydrodynamics are taken into consideration. Nonrepresentative data and random noises are more effectively rejected by this method, which has value both in defining a climatological mean and identifying outlier data. Assessing with both profiling and coordinated datasets, the agreement is reasonably good (particularly for those areas with abundant observations), but the results (although already smoothed) can capture more detailed or mesoscale features for further regional studies. The method described has the potential to meet future challenges in processing accumulating Argo observations in the coming decades.

Corresponding author e-mail: Dong Wang, dong.wang@nuist.edu.cn

Abstract

A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper describes and shows the impact of climatological checks (collective QC) on the quality of both processed profiles and resultant climatological distributions. Objective analysis (OA) is applied progressively to produce the gridded climatological fields. The method uses horizontal regional climatological averages defined in five regime-oriented subregions in the Kuroshio area and the Japan Sea. Performing the QC procedure on specific coherent subregions produces improved profiling data and climatological fields because more details about the local hydrodynamics are taken into consideration. Nonrepresentative data and random noises are more effectively rejected by this method, which has value both in defining a climatological mean and identifying outlier data. Assessing with both profiling and coordinated datasets, the agreement is reasonably good (particularly for those areas with abundant observations), but the results (although already smoothed) can capture more detailed or mesoscale features for further regional studies. The method described has the potential to meet future challenges in processing accumulating Argo observations in the coming decades.

Corresponding author e-mail: Dong Wang, dong.wang@nuist.edu.cn
Save