• Alexander, M. A., Scott J. D. , and Deser C. , 2000: Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J. Geophys. Res., 105, 16 82316 842, doi:10.1029/2000JC900074.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., Scott R. B. , Chelton D. B. , Richman J. G. , and Shriver J. F. , 2012: Effects on stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data. J. Geophys. Res., 117, C03029, doi:10.1029/2011JC007367.

    • Search Google Scholar
    • Export Citation
  • Berta, M., Griffa A. , Magaldi M. G. , Özgökmen T. M. , Poje A. C. , Haza A. , and Olascoaga M. J. , 2015: Improved surface velocity and trajectory estimates in the Gulf of Mexico from blended satellite altimetry and drifter data. J. Atmos. Oceanic Technol., 32, 18801901, doi:10.1175/JTECH-D-14-00226.1.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and Lagerloef G. S. E. , 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32, 29382954, doi:10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowen, M. M., Emery W. J. , Wilkin J. L. , Tildesley P. C. , Barton I. J. , and Knewtson R. , 2002: Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Oceanic Technol., 19, 16651676, doi:10.1175/1520-0426(2002)019<1665:EMSCFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casey, K. S., and Adamec D. , 2002: Sea surface temperature and sea surface height variability in the North Pacific Ocean from 1993 to 1999. J. Geophys. Res., 107, 3099, doi:10.1029/2001JC001060.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., DeSzoeke R. A. , Schlax M. G. , El Naggar K. , and Siwertz N. , 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W., 2011: Nonlinear inverse model for velocity estimation from an image sequence. J. Geophys. Res., 116, C06015, doi:10.1029/2010JC006924.

    • Search Google Scholar
    • Export Citation
  • Chen, W., Mied R. P. , and Shen C. Y. , 2008: Near-surface ocean velocity from infrared images: Global Optimal Solution to an inverse model. J. Geophys. Res., 113, C10003, doi:10.1029/2008JC004747.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dombrowsky, E., and Coauthors, 2009: GODAE systems in operation. Oceanography, 22, 8095, doi:10.5670/oceanog.2009.68.

  • Drévillon, M., and Coauthors, 2008: The GODAE/Mercator-Ocean global ocean forecasting system: Results, applications and prospects. J. Oper. Oceanogr., 1, 5157, doi:10.1080/1755876X.2008.11020095.

    • Search Google Scholar
    • Export Citation
  • Drillet, Y., Bricaud C. , Bourdallé-Badie R. , Derval C. , Le Galloudec O. , Garric G. , Testut C.-E. , and Tranchant B. , 2008: The Mercator Ocean global 1/12° operational system: Demonstration phase in the MERSEA context. Mercator Ocean Quarterly Newsletter, No. 29, Mercator Ocean, Ramonville Saint-Agne, France, 5–8.

  • Emery, W. J., Thomas A. C. , Collins M. J. , Crawford W. R. , and Mackas D. L. , 1986: An objective method for computing advective surface velocities from sequential infrared satellite images. J. Geophys. Res., 91, 12 86512 878, doi:10.1029/JC091iC11p12865.

    • Search Google Scholar
    • Export Citation
  • Gaultier, L., Djath B. , Verron J. , Brankart J.-M. , Brasseur P. , and Melet A. , 2014: Inversion of submesoscale patterns from a high-resolution Solomon Sea model: Feasibility assessment. J. Geophys. Res. Oceans, 119, 45204541, doi:10.1002/2013JC009660.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., Pierrehumbert R. T. , Garner S. T. , and Swanson K. L. , 1995: Surface quasigeostrophic dynamics. J. Fluid Mech., 282, 120, doi:10.1017/S0022112095000012.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and Coauthors, 2009: High-resolution global and basin-scale ocean analyses and forecasts. Oceanography, 22, 110127, doi:10.5670/oceanog.2009.70.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., Chapron B. , Lapeyre G. , and Klein P. , 2006: Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, L24608, doi:10.1029/2006GL027801.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., Lapeyre G. , Klein P. , Chapron B. , and Hecht M. W. , 2008: Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res., 113, C09005, doi:10.1029/2007JC004692.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., Shinde M. , and Gonzalez-Haro C. , 2014: On the transfer function between surface fields and the geostrophic stream function in the Mediterranean Sea. J. Phys. Oceanogr., 44, 1406, doi:10.1175/JPO-D-13-0186.1.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier Oceanography Series, Vol. 5, American Elsevier Publishing Co., 194 pp.

  • Jones, M. S., Allen M. , Guymer T. , and Saunders M. , 1998: Correlations between altimetric sea surface height and radiometric sea surface temperature in the South Atlantic. J. Geophys. Res., 103, 80738087, doi:10.1029/97JC02177.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., 1989: An inverse model for near-surface velocity from infrared images. J. Phys. Oceanogr., 19, 18451864, doi:10.1175/1520-0485(1989)019<1845:AIMFNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and Strub P. T. , 1992: Comparison of velocity estimates from advanced very high resolution radiometer in the Coastal Transition Zone. J. Geophys. Res., 97, 96539668, doi:10.1029/92JC00734.

    • Search Google Scholar
    • Export Citation
  • Klein, P., Hua B. L. , Lapeyre G. , Capet X. , Le Gentil S. , and Sasaki H. , 2008: Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, doi:10.1175/2007JPO3773.1.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., Mitchum G. , Lukas R. , and Niiler P. , 1999: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104, 23 31323 326, doi:10.1029/1999JC900197.

    • Search Google Scholar
    • Export Citation
  • Le Galloudec, O., Bourdallé-Badie R. , Drillet Y. , Derval C. , and Bricaud C. , 2008: Simulation of meso-scale eddies in the Mercator global ocean high resolution model. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville Saint-Agne, France, 22–30.

  • Le Traon, P.-Y., and Dibarboure G. , 1999: Mesoscale mapping capabilities from multiple altimeter missions. J. Atmos. Oceanic Technol., 16, 12081223, doi:10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leuliette, E. W., and Wahr J. M. , 1999: Coupled pattern analysis of sea surface temperature and TOPEX/Poseidon sea surface height. J. Phys. Oceanogr., 29, 599611, doi:10.1175/1520-0485(1999)029<0599:CPAOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Version 3.0, Note du Pôle de Modélisation, L’Institut Pierre-Simon Laplace 27, 209 pp. [Available online at http://www.nemo-ocean.eu/content/download/5302/31828/file/NEMO_book.pdf.]

  • Madec, G., and Imbard M. , 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn., 12, 381388, doi:10.1007/BF00211684.

    • Search Google Scholar
    • Export Citation
  • Mercatini, A., Griffa A. , Piterbarg L. , Zambianchi E. , and Magaldi M. , 2010: Estimating surface velocities from satellite tracer data and numerical models: Implementation and testing of a new simple method. Ocean Modell., 33, 190203, doi:10.1016/j.ocemod.2010.01.003.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., Beauchamp J. , McClain C. R. , Lewis M. , and Busalacchi A. J. , 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15, 470486, doi:10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ostrovskii, A. G., and Piterbarg L. I. , 1995: Inversion for the heat anomaly transport from SST time series. J. Geophys. Res., 100, 48454865, doi:10.1029/94JC03041.

    • Search Google Scholar
    • Export Citation
  • Ostrovskii, A. G., and Piterbarg L. I. , 1997: A new method for obtaining velocity and mixing coefficients from time-dependent distributions of tracer via the maximum likelihood estimator for the advection–diffusion equation. J. Comput. Phys., 133, 340360, doi:10.1006/jcph.1997.5674.

    • Search Google Scholar
    • Export Citation
  • Ostrovskii, A. G., and Piterbarg L. I. , 2000: Inversion of upper ocean temperature time series for entrainment, advection, and diffusivity. J. Phys. Oceanogr., 72, 301315, doi:10.1175/1520-0485(2000)030<0201:IOUOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Piterbarg, L. I., 2009: A simple method for computing velocities from tracer observations and a model output. Appl. Math. Modell., 33, 36933704, doi:10.1016/j.apm.2008.12.006.

    • Search Google Scholar
    • Export Citation
  • Piterbarg, L. I., and Ivanov L. M. , 2013: Estimating circulation patterns by combining velocity and tracer observations. Open J. Appl. Sci., 3, 814, doi:10.4236/ojapps.2013.31002.

    • Search Google Scholar
    • Export Citation
  • Pujol, M., Dibarboure G. , Le Traon P.-Y. , and Klein P. , 2012: Using high-resolution altimetry to observe mesoscale signals. J. Atmos. Oceanic Technol., 29, 14091416, doi:10.1175/JTECH-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Pujol, M., Faugère Y. , Taburet G. , Dupuy S. , Pelloquin C. , Ablain M. , and Picot N. , 2016: DUACS DT2014: The new multi-mission altimeter dataset reprocessed over 20 years. Ocean Sci., 2, 10671090, doi:10.5194/os-12-1067-2016.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., and Hernandez F. , 2003: High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J. Geophys. Res., 108, 32833301, doi:10.1029/2002JC001655.

    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., Mulet S. , and Picot N. , 2014: Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys. Res. Lett., 41, 89188925, doi:10.1002/2014GL061773.

    • Search Google Scholar
    • Export Citation
  • Soufflet, Y., Marchesiello P. , Jouanno J. , Capet X. , Debreu L. , and Lemarie F. , 2016: On effective resolution in ocean models. Ocean Modell., 98, 3640, doi:10.1016/j.ocemod.2015.12.004.

    • Search Google Scholar
    • Export Citation
  • Sudre, J., Maes C. , and Garçon V. , 2013: On the global estimates of geostrophic and Ekman surface currents. Limnol. Oceanogr: Fluids Environ., 3, 120, doi:10.1215/21573689-2071927.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., Goosse H. , Madec G. , Fichefet T. , Ethe C. , and Dulière V. , 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea–ice ocean model. Ocean Modell., 8, 175201, doi:10.1016/j.ocemod.2003.12.009.

    • Search Google Scholar
    • Export Citation
  • Tranchant, B., Testut C.-E. , Ferry N. , Renault L. , Obligis E. , Boone C. , and Larnicol G. , 2008: Data assimilation of simulated SSS SMOS products in an ocean forecasting system. J. Oper. Oceanogr., 1, 1927, doi:10.1080/1755876X.2008.11020099.

    • Search Google Scholar
    • Export Citation
  • Turiel, A., Isern-Fontanet J. , Garcia-Ladona E. , and Font J. , 2005: Multifractal method for the instantaneous evaluation of the stream function in geophysical flows. Phys. Rev. Lett., 95, 104502, doi:10.1103/PhysRevLett.95.104502.

    • Search Google Scholar
    • Export Citation
  • Turiel, A., Nieves V. , Garcia-Ladona E. , Font J. , Rio M.-H. , and Larnicol G. , 2009: The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines. Ocean Sci., 5, 447460, doi:10.5194/os-5-447-2009.

    • Search Google Scholar
    • Export Citation
  • Ubelmann, C., Klein P. , and Fu L.-L. , 2015: Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J. Atmos. Oceanic Technol., 32, 177184, doi:10.1175/JTECH-D-14-00152.1.

    • Search Google Scholar
    • Export Citation
  • Vigan, X., Provost C. , Bleck R. , and Courtier P. , 2000a: Sea surface velocities from sea surface temperature image sequences: 1. Method and validation using primitive equation model output. J. Geophys. Res., 105, 19 49919 514, doi:10.1029/2000JC900027.

    • Search Google Scholar
    • Export Citation
  • Vigan, X., Provost C. , and Podesta G. , 2000b: Sea surface velocities from sea surface temperature image sequences: 2. Application to the Brazil–Malvinas Confluence area. J. Geophys. Res., 105, 19 51519 534, doi:10.1029/2000JC900028.

    • Search Google Scholar
    • Export Citation
  • Von Schuckmann, K., Brandt P. , and Eden C. , 2008: Generation of tropical instability waves in the Atlantic Ocean. J. Geophys. Res., 113, C08034, doi:10.1029/2007JC004712.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and Coauthors, 2013: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. WCRP Informal/Series Rep. 13/2013, ICPO Informal Rep. 189/13, 42 pp.

  • Zavialov, P. O., Ghisolfi R. D. , and Garcia C. A. E. , 1998: An inverse model for seasonal circulation over the southern Brazilian shelf: Near-surface velocity from the heat budget. J. Phys. Oceanogr., 28, 545562, doi:10.1175/1520-0485(1998)028<0545:AIMFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 42
PDF Downloads 44 44 44

Improving the Altimeter-Derived Surface Currents Using High-Resolution Sea Surface Temperature Data: A Feasability Study Based on Model Outputs

View More View Less
  • 1 ISAC, CNR, Rome, Italy
  • | 2 Mercator Ocean, Ramonville Saint Agne, France
  • | 3 ISMAR, CNR, Lerici, Italy
  • | 4 University of Southern California, Los Angeles, California
  • | 5 CLS, Ramonville Saint Agne, France
Restricted access

Abstract

Accurate knowledge of ocean surface currents at high spatial and temporal resolutions is crucial for a gamut of applications. The altimeter observing system, by providing repeated global measurements of the sea surface height, has been by far the most exploited system to estimate ocean surface currents over the past 20 years. However, it neither permits the observation of currents moving away from the geostrophic balance nor is it capable of resolving the shortest spatial and temporal scales of the currents. Therefore, to overcome these limitations, in this study the ways in which the high-spatial-resolution and high-temporal-resolution information from sea surface temperature (SST) images can improve the altimeter current estimates are investigated. The method involves inverting the SST evolution equation for the velocity by prescribing the source and sink terms and employing the altimeter currents as the large-scale background flow. The method feasibility is tested using modeled data from the Mercator Ocean system. This study shows that the methodology may improve the altimeter velocities at spatial scales not resolved by the altimeter system (i.e., below 150 km) but also at larger scales, where the geostrophic equilibrium might not be the unique or dominant process of the ocean circulation. In particular, the major improvements (more than 30% on the meridional component) are obtained in the equatorial band, where the geostrophic assumption is not valid. Finally, the main issues anticipated when this method is applied using real datasets are investigated and discussed.

Corresponding author e-mail: Marie-Hélène Rio, mrio@cls.fr

Abstract

Accurate knowledge of ocean surface currents at high spatial and temporal resolutions is crucial for a gamut of applications. The altimeter observing system, by providing repeated global measurements of the sea surface height, has been by far the most exploited system to estimate ocean surface currents over the past 20 years. However, it neither permits the observation of currents moving away from the geostrophic balance nor is it capable of resolving the shortest spatial and temporal scales of the currents. Therefore, to overcome these limitations, in this study the ways in which the high-spatial-resolution and high-temporal-resolution information from sea surface temperature (SST) images can improve the altimeter current estimates are investigated. The method involves inverting the SST evolution equation for the velocity by prescribing the source and sink terms and employing the altimeter currents as the large-scale background flow. The method feasibility is tested using modeled data from the Mercator Ocean system. This study shows that the methodology may improve the altimeter velocities at spatial scales not resolved by the altimeter system (i.e., below 150 km) but also at larger scales, where the geostrophic equilibrium might not be the unique or dominant process of the ocean circulation. In particular, the major improvements (more than 30% on the meridional component) are obtained in the equatorial band, where the geostrophic assumption is not valid. Finally, the main issues anticipated when this method is applied using real datasets are investigated and discussed.

Corresponding author e-mail: Marie-Hélène Rio, mrio@cls.fr
Save