Abstract
This paper proposes a new algorithm for parallel identification of mesoscale eddies from global satellite altimetry data. By simplifying the recognition process and the sea level anomaly (SLA) contours’ search range, the method improves identification efficiency compared with the previous SSH-based method even in the single-threaded process. The global SLA map is divided into several regions. These regions are identified simultaneously with a new SSH-based method. All the eddy identification results of these regions are merged seamlessly into a global eddy map. A β-plane approximation is used to calculate the geostrophic speed in the equatorial band. Compared with the computation complexity of the previous SSH-based method, which is