• Barrick, D. E., 1977: Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Sci., 12, 415424, doi:10.1029/RS012i003p00415.

    • Search Google Scholar
    • Export Citation
  • Benson, D. J., 1992: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng., 99, 235394, doi:10.1016/0045-7825(92)90042-I.

    • Search Google Scholar
    • Export Citation
  • Berta, M., Bellomo L. , Magaldi M. G. , Griffa A. , Molcard A. , Marmain J. , Borghini M. , and Taillandier V. , 2014: Estimating Lagrangian transport blending drifters with HF radar data and models: Results from the TOSCA experiment in the Ligurian Current (North Western Mediterranean Sea). Prog. Oceanogr., 128, 1529, doi:10.1016/j.pocean.2014.08.004.

    • Search Google Scholar
    • Export Citation
  • Breivik, O., Allen A. A. , Maisondieu C. , and Olagnon M. , 2013: Advances in search and rescue at sea. Ocean Dyn., 63, 8388, doi:10.1007/s10236-012-0581-1.

    • Search Google Scholar
    • Export Citation
  • Charria, G., and Coauthors, 2013: Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay. J. Mar. Syst., 109–110 (Suppl.), S60S76, doi:10.1016/j.jmarsys.2011.09.015.

    • Search Google Scholar
    • Export Citation
  • Fernández, D. M., Vesecky J. F. , and Teague C. C. , 1996: Measurements of upper ocean surface current shear with high-frequency radar. J. Geophys. Res., 101, 28 61528 625, doi:10.1029/96JC03108.

    • Search Google Scholar
    • Export Citation
  • Ferrer, L., Fontán A. , Mader J. , Chust G. , González M. , Valencia V. , Uriarte A. , and Collins M. , 2009: Low-salinity plumes in the oceanic region of the Basque Country. Cont. Shelf Res., 29, 970984, doi:10.1016/j.csr.2008.12.014.

    • Search Google Scholar
    • Export Citation
  • Fontán, A., and Cornuelle B. , 2015: Anisotropic response of surface circulation to wind forcing, as inferred from high-frequency radar currents in the southeastern Bay of Biscay. J. Geophys. Res. Oceans, 120, 29452957, doi:10.1002/2014JC010671.

    • Search Google Scholar
    • Export Citation
  • Fontán, A., Esnaola G. , Sáenz J. , and González M. , 2013: Variability in the air–sea interaction patterns and timescales within the south-eastern Bay of Biscay, as observed by HF radar data. Ocean Sci., 9, 399410, doi:10.5194/os-9-399-2013.

    • Search Google Scholar
    • Export Citation
  • Frolov, S., Paduan J. , Cook M. , and Bellingham J. , 2012: Improved statistical prediction of surface currents based on historic HF-radar observations. Ocean Dyn., 62, 11111122, doi:10.1007/s10236-012-0553-5.

    • Search Google Scholar
    • Export Citation
  • González, M., Uriarte A. , Fontán A. , Mader J. , and Gyssels P. , 2004: Marine dynamics. Oceanography and Marine Environment of the Basque Country, A. Borja and M. Collins, Eds., Elsevier Oceanography Series, Vol. 70, Elsevier, 133–157, doi:10.1016/S0422-9894(04)80044-8.

    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., 1994: Shipborne measurement of surface current fields by HF radar. Onde Electr., 74, 5459.

  • Kaplan, D. M., and Lekien F. , 2007: Spatial interpolation and filtering of surface current data based on open-boundary modal analysis. J. Geophys. Res., 112, C12007, doi:10.1029/2006JC003984.

    • Search Google Scholar
    • Export Citation
  • Kersalé, M., Marié L. , Cann B. L. , Serpette A. , Lathuilière C. , Boyer A. L. , Rubio A. , and Lazure P. , 2016: Poleward along-shore current pulses on the inner shelf of the Bay of Biscay. Estuarine Coastal Shelf Sci., 179, 155171, doi:10.1016/j.ecss.2015.11.018.

    • Search Google Scholar
    • Export Citation
  • Kohut, J., Roarty H. , Randall-Goodwin E. , Glenn S. , and Lichtenwalner C. , 2012: Evaluation of two algorithms for a network of coastal HF radars in the mid-Atlantic Bight. Ocean Dyn., 62, 953968, doi:10.1007/s10236-012-0533-9.

    • Search Google Scholar
    • Export Citation
  • Le Cann, B., 1990: Barotropic tidal dynamics of the Bay of Biscay shelf: Observations, numerical modelling and physical interpretation. Cont. Shelf Res., 10, 723758, doi:10.1016/0278-4343(90)90008-A.

    • Search Google Scholar
    • Export Citation
  • Le Cann, B., and Serpette A. , 2009: Intense warm and saline upper ocean inflow in the southern Bay of Biscay in autumn–winter 2006–2007. Cont. Shelf Res., 29, 10141025, doi:10.1016/j.csr.2008.11.015.

    • Search Google Scholar
    • Export Citation
  • Lipa, B., and Barrick D. , 1983: Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE. IEEE J. Oceanic Eng., 8, 226253, doi:10.1109/JOE.1983.1145578.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, C., White P. , Washburn L. , Terrill E. , Emery B. , and Otero M. , 2007: Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, 666680, doi:10.1175/JTECH1998.1.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and Rosenfeld L. K. , 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res., 101, 20 66920 686, doi:10.1029/96jc01663.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and Graber H. C. , 1997: Introduction to high-frequency radar: Reality and myth. Oceanography, 10 (2), 3639, doi:10.5670/oceanog.1997.18.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., and Washburn L. , 2013: High-frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci., 5, 115136, doi:10.1146/annurev-marine-121211-172315.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., and Le Cann B. , 1990: Structure, strength and seasonality of the slope currents in the Bay of Biscay region. J. Mar. Biol. Assoc., 70, 857885, doi:10.1017/S0025315400059117.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., and Le Cann B. , 1992a: Anticyclonic eddy X91 in the southern Bay of Biscay, May 1991 to February 1992. J. Geophys. Res., 97, 14 35314 367, doi:10.1029/92JC01181.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., and Le Cann B. , 1992b: Three anticyclonic slope water oceanic eddies (SWODDIES) in the Southern Bay of Biscay in 1990. Deep-Sea Res., 39A, 11471175, doi:10.1016/0198-0149(92)90062-X.

    • Search Google Scholar
    • Export Citation
  • Roarty, H., and Coauthors, 2010: Operation and application of a regional high-frequency radar network in the Mid-Atlantic Bight. Mar. Technol. Soc. J., 44, 133145, doi:10.4031/MTSJ.44.6.5.

    • Search Google Scholar
    • Export Citation
  • Rubio, A., Reverdin G. , Fontán A. , González M. , and Mader J. , 2011: Mapping near-inertial variability in the SE Bay of Biscay from HF radar data and two offshore moored buoys. Geophys. Res. Lett., 38, L19607, doi:10.1029/2011GL048783.

    • Search Google Scholar
    • Export Citation
  • Rubio, A., Fontán A. , Lazure P. , González M. , Valencia V. , Ferrer L. , Mader J. , and Hernández C. , 2013a: Seasonal to tidal variability of currents and temperature in waters of the continental slope, southeastern Bay of Biscay. J. Mar. Syst., 109–110 (Suppl.), S121S133, doi:10.1016/j.jmarsys.2012.01.004.

    • Search Google Scholar
    • Export Citation
  • Rubio, A., Solabarrieta L. , González M. , Mader J. , Castanedo S. , Medina R. , Charria G. , and Aranda J. , 2013b: Surface circulation and Lagrangian transport in the SE Bay of Biscay from HF radar data. MTS/IEEE OCEANS—Bergen, 2013, IEEE, 7 pp., doi:10.1109/OCEANS-Bergen.2013.6608039.

  • Schmidt, R., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag., 34, 276280, doi:10.1109/TAP.1986.1143830.

    • Search Google Scholar
    • Export Citation
  • Solabarrieta, L., Rubio A. , Castanedo S. , Medina R. , Charria G. , and Hernández C. , 2014: Surface water circulation patterns in the southeastern Bay of Biscay: New evidences from HF radar data. Cont. Shelf Res., 74, 6076, doi:10.1016/j.csr.2013.11.022.

    • Search Google Scholar
    • Export Citation
  • Solabarrieta, L., Rubio A. , Cárdenas M. , Castanedo S. , Esnaola G. , Méndez F. J. , Medina R. , and Ferrer L. , 2015: Probabilistic relationships between wind and surface water circulation patterns in the SE Bay of Biscay. Ocean Dyn., 65, 12891303, doi:10.1007/s10236-015-0871-5.

    • Search Google Scholar
    • Export Citation
  • Stewart, R., and Joy J. , 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, doi:10.1016/0011-7471(74)90066-7.

    • Search Google Scholar
    • Export Citation
  • Ullman, D., Donnell J. O. , Kohut J. , Fake T. , and Allen A. , 2006: Trajectory prediction using HF radar surface currents: Monte Carlo simulations of prediction uncertainties. J. Geophys. Res., 111, C12005, doi:10.1029/2006JC003715.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., 2002: Surface currents in the Bay of Biscay as observed with drifters between 1995 and 1999. Deep-Sea Res. I, 49, 10711086, doi:10.1016/S0967-0637(02)00017-1.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L., 2014: High frequency radar applications in coastal monitoring, planning and engineering. Aust. J. Civ. Eng., 12, 115, doi:10.7158/14488353.2014.11463992.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 4 4 4

Skill Assessment of HF Radar–Derived Products for Lagrangian Simulations in the Bay of Biscay

View More View Less
  • 1 Marine Research Unit, AZTI-Tecnalia, Pasaia, Spain
  • | 2 University Corporation for Atmospheric Research, Boulder, Colorado, and Naval Research Laboratory, Monterey, California
  • | 3 Naval Postgraduate School, Monterey, California
  • | 4 Marine Research Unit, AZTI-Tecnalia, Pasaia, Spain
  • | 5 Laboratoire d’Océanographie Physique et Spatiale, Plouzané, France
Restricted access

Abstract

Since January 2009, two long-range high-frequency (HF) radar systems have been collecting hourly high-spatial-resolution surface current data in the southeastern corner of the Bay of Biscay. The temporal resolution of the HF radar surface currents permits simulating drifter trajectories with the same time step as that of real drifters deployed in the region in 2009. The main goal of this work is to compare real drifter trajectories with trajectories computed from HF radar currents obtained using different methods, including forecast currents. Open-boundary modal analysis (OMA) is applied to the radar radial velocities and then a linear autoregressive model on the empirical orthogonal function (EOF) decomposition of an historical data series is used to forecast OMA currents. Additionally, the accuracy of the forecast method in terms of the spatial and temporal distribution of the Lagrangian distances between observations and forecasts is investigated for a 4-yr period (2009–12). The skills of the different HF radar products are evaluated within a 48-h window. The mean distances between real trajectories and their radar-derived counterparts range from 4 to 5 km for real-time and forecast currents after 12 hours of simulations. The forecast model improves persistence (i.e., the simulations obtained by using the last available OMA fields as a constant variable) after 6 hours of simulation and improves the estimation of trajectories up to 28% after 48 hours. The performance of the forecast is observed to be variable in space and time, related to the different ocean processes governing the local ocean circulation.

AZTI Contribution Number 772.

Current affiliation: DeustoTech Energy, Bilbo, Spain.

Corresponding author address: Lohitzune Solabarrieta, Marine Research Unit, AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain. E-mail: lohisola@hotmail.com

Abstract

Since January 2009, two long-range high-frequency (HF) radar systems have been collecting hourly high-spatial-resolution surface current data in the southeastern corner of the Bay of Biscay. The temporal resolution of the HF radar surface currents permits simulating drifter trajectories with the same time step as that of real drifters deployed in the region in 2009. The main goal of this work is to compare real drifter trajectories with trajectories computed from HF radar currents obtained using different methods, including forecast currents. Open-boundary modal analysis (OMA) is applied to the radar radial velocities and then a linear autoregressive model on the empirical orthogonal function (EOF) decomposition of an historical data series is used to forecast OMA currents. Additionally, the accuracy of the forecast method in terms of the spatial and temporal distribution of the Lagrangian distances between observations and forecasts is investigated for a 4-yr period (2009–12). The skills of the different HF radar products are evaluated within a 48-h window. The mean distances between real trajectories and their radar-derived counterparts range from 4 to 5 km for real-time and forecast currents after 12 hours of simulations. The forecast model improves persistence (i.e., the simulations obtained by using the last available OMA fields as a constant variable) after 6 hours of simulation and improves the estimation of trajectories up to 28% after 48 hours. The performance of the forecast is observed to be variable in space and time, related to the different ocean processes governing the local ocean circulation.

AZTI Contribution Number 772.

Current affiliation: DeustoTech Energy, Bilbo, Spain.

Corresponding author address: Lohitzune Solabarrieta, Marine Research Unit, AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain. E-mail: lohisola@hotmail.com
Save