• Bouttier, P.-A., Blayo E. , Brankart J. M. , Brasseur P. , Cosme E. , Verron J. , and Vidard A. , 2012: Toward a data assimilation system for NEMO. Mercator Ocean Quarterly Newsletter, No. 46, Ramonville Saint-Agne France, 24–30.

  • Brankart, J., Ubelmann C. , Testut C. , Cosme E. , Brasseur P. , and Verron J. , 2009: Efficient parameterization of the observation error covariance matrix for square root or ensemble Kalman filters: Application to ocean altimetry. Mon. Wea. Rev., 137, 19081927, doi:10.1175/2008MWR2693.1.

    • Search Google Scholar
    • Export Citation
  • Brankart, J., Cosme E. , Testut C. , Brasseur P. , and Verron J. , 2010: Efficient adaptive error parameterizations for square root or ensemble Kalman filters: Application to the control of ocean mesoscale signals. Mon. Wea. Rev., 138, 932950, doi:10.1175/2009MWR3085.1.

    • Search Google Scholar
    • Export Citation
  • Candille, G., Brankart J. M. , and Brasseur P. , 2015: Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic Ocean circulation. Ocean Sci., 11, 26472690, doi:10.5194/os-11-425-2015.

    • Search Google Scholar
    • Export Citation
  • Cosme, E., Brankart J.-M. , Verron J. , Brasseur P. , and Krysta M. , 2010: Implementation of a reduced rank square-root smoother for high resolution ocean data assimilation. Ocean Modell., 33, 87100, doi:10.1016/j.ocemod.2009.12.004.

    • Search Google Scholar
    • Export Citation
  • Durand, M., Fu L.-L. , Lettenmaier D. , Alsdorf D. , Rodriguez E. , and Esteban-Fernandez D. , 2010: The Surface Water and Ocean Topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE, 98, 766779, doi:10.1109/JPROC.2010.2043031.

    • Search Google Scholar
    • Export Citation
  • Esteban-Fernandez, D., 2013: SWOT project: Mission performance and error budget. Revision A, NASA/JPL Tech. Rep. JPL D-79084, 83 pp. [Available online at http://swot.jpl.nasa.gov/files/SWOT_D-79084_v5h6_SDT.pdf.]

  • Fieguth, P. W., Karl W. C. , Willsky A. S. , and Wunsch C. , 1995: Multiresolution optimal interpolation and statistical analysis of TOPEX/Poseidon satellite altimetry. IEEE Trans. Geosci. Remote Sens., 33, 280292, doi:10.1109/36.377928.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., Alsdorf D. , Morrow R. , Rodriguez E. , and Mognard N. , Eds., 2012: SWOT: The Surface Water and Ocean Topography mission; wide-swath altimetric measurement of water elevation on Earth. Jet Propulsion Laboratory Publ. 12-05, 228 pp. [Available online at http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41996/3/JPL%20Pub%2012-5.pdf.]

  • Gaultier, L., Ubelmann C. , and Fu L.-L. , 2016: The challenge of using future SWOT data for oceanic field reconstruction. J. Atmos. Oceanic Technol., 33, 119126, doi:10.1175/JTECH-D-15-0160.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, T., Nerger L. , Albertella A. , Schröter J. , and Skachko S. , 2011: On domain localization in ensemble-based Kalman filter algorithms. Mon. Wea. Rev., 139, 20462060, doi:10.1175/2011MWR3552.1.

    • Search Google Scholar
    • Export Citation
  • Järvinen, H., and Undén P. , 1997: Observation screening and background quality control in the ECMWF 3D-Var data assimilation system. ECMWF Tech. Memo. 236, 33 pp.

  • Li, H., Kalnay E. , and Miyoshi T. , 2009: Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 523533, doi:10.1002/qj.371.

    • Search Google Scholar
    • Export Citation
  • Liu, Z.-Q., and Rabier F. , 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128B, 13671386, doi:10.1256/003590002320373337.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. IPSL Note du Pôle de modélisation de l’Institut Pierre-Simon Laplace 27, 209 pp. [Available online at http://www.nemo-ocean.eu/content/download/5302/31828/file/NEMO_book.pdf.]

  • Miyoshi, T., Kalnay E. , and Li H. , 2013: Estimating and including observation-error correlations in data assimilation. Inverse Probl. Sci. Eng., 21, 387398, doi:10.1080/17415977.2012.712527.

    • Search Google Scholar
    • Export Citation
  • Oke, P. R., Brassington G. B. , Griffin D. A. , and Schiller A. , 2008: The Bluelink Ocean Data Assimilation System (BODAS). Ocean Modell., 21, 46–70, doi:10.1016/j.ocemod.2007.11.002.

    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., Dance S. L. , and Nichols N. K. , 2008: Correlated observation errors in data assimilation. Int. J. Numer. Methods Fluids, 56, 1521–1527, doi:10.1002/fld.1636.

    • Search Google Scholar
    • Export Citation
  • Stewart, L. M., Dance S. L. , and Nichols N. K. , 2013: Data assimilation with correlated observation errors: Experiments with a 1-D shallow water model. Tellus, 65A, 19546, doi:10.3402/tellusa.v65i0.19546.

    • Search Google Scholar
    • Export Citation
  • Ubelmann, C., Gaultier L. , and Fu L.-L. , 2016: SWOT simulator for ocean science. Accessed 30 November 2016. [Available online at https://github.com/SWOTsimulator/swotsimulator/blob/master/doc/source/science.rst.]

  • Waller, J. A., Dance S. L. , Lawless A. S. , and Nichols N. K. , 2014: Estimating correlated observation error statistics using an ensemble transform Kalman filter. Tellus, 66A, 23294, doi:10.3402/tellusa.v66.23294.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 400 281 0
PDF Downloads 259 168 0

An Efficient Way to Account for Observation Error Correlations in the Assimilation of Data from the Future SWOT High-Resolution Altimeter Mission

View More View Less
  • 1 CNRS, Université Grenoble Alpes, LGGE, Grenoble, France
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Most data assimilation algorithms require the inverse of the covariance matrix of the observation errors. In practical applications, the cost of computing this inverse matrix with spatially correlated observation errors is prohibitive. Common practices are therefore to subsample or combine the observations so that the errors of the assimilated observations can be considered uncorrelated. As a consequence, a large fraction of the available observational information is not used in practical applications. In this study, a method is developed to account for the correlations of the errors that will be present in the wide-swath sea surface height measurements, for example, the Surface Water and Ocean Topography (SWOT) mission. It basically consists of the transformation of the observation vector so that the inverse of the corresponding covariance matrix can be replaced by a diagonal matrix, thus allowing to genuinely take into account errors that are spatially correlated in physical space. Numerical experiments of ensemble Kalman filter analysis of SWOT-like observations are conducted with three different observation error covariance matrices. Results suggest that the proposed method provides an effective way to account for error correlations in the assimilation of the future SWOT data. The transformation of the observation vector proposed herein yields both a significant reduction of the root-mean-square errors and a good consistency between the filter analysis error statistics and the true error statistics.

Current affiliation: Mercator Océan, Toulouse, France.

Current affiliation: CLS, Toulouse, France.

Corresponding author address: E. Cosme, LGGE/MEOM, BP53X, 38041 Grenoble CEDEX 9, France. E-mail: emmanuel.cosme@univ-grenoble-alpes.fr

Abstract

Most data assimilation algorithms require the inverse of the covariance matrix of the observation errors. In practical applications, the cost of computing this inverse matrix with spatially correlated observation errors is prohibitive. Common practices are therefore to subsample or combine the observations so that the errors of the assimilated observations can be considered uncorrelated. As a consequence, a large fraction of the available observational information is not used in practical applications. In this study, a method is developed to account for the correlations of the errors that will be present in the wide-swath sea surface height measurements, for example, the Surface Water and Ocean Topography (SWOT) mission. It basically consists of the transformation of the observation vector so that the inverse of the corresponding covariance matrix can be replaced by a diagonal matrix, thus allowing to genuinely take into account errors that are spatially correlated in physical space. Numerical experiments of ensemble Kalman filter analysis of SWOT-like observations are conducted with three different observation error covariance matrices. Results suggest that the proposed method provides an effective way to account for error correlations in the assimilation of the future SWOT data. The transformation of the observation vector proposed herein yields both a significant reduction of the root-mean-square errors and a good consistency between the filter analysis error statistics and the true error statistics.

Current affiliation: Mercator Océan, Toulouse, France.

Current affiliation: CLS, Toulouse, France.

Corresponding author address: E. Cosme, LGGE/MEOM, BP53X, 38041 Grenoble CEDEX 9, France. E-mail: emmanuel.cosme@univ-grenoble-alpes.fr
Save