• Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, doi:10.2151/jmsj.2016-009.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Han Y. , van Delst P. , and Weng F. , 2013: Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the Community Radiative Transfer Model using IASI data. J. Atmos. Oceanic Technol., 30, 21522160, doi:10.1175/JTECH-D-12-00267.1.

    • Search Google Scholar
    • Export Citation
  • Clark, S., 2014: Upgraded Japanese weather satellite set for launch. [Available online at http://spaceflightnow.com/2014/10/06/upgraded-japanese-weather-satellite-set-for-launch/.]

  • Gravelle, C. M., Mecikalski J. R. , Line W. E. , Bedka K. M. , Petersen R. A. , Sieglaff J. M. , Stano G. T. , and Goodman S. J. , 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 69–84, doi:10.1175/BAMS-D-14-00054.1.

    • Search Google Scholar
    • Export Citation
  • Han, Y., Weng F. , Liu Q. , and van Delst P. , 2007: A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res., 112, D11121, doi:10.1029/2006JD008208.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., 2011: ABI cloud mask. Version 2.0, NOAA/NESDIS/Center for Satellite Applications and Research Algorithm Theoretical Basis Doc., 93 pp.

  • Heidinger, A. K., Evan A. T. , Foster M. J. , and Walther A. , 2012: A naïve Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, doi:10.1175/JAMC-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Köpken, C., Kelly G. , and Thépaut J.-N. , 2004: Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact. Quart. J. Roy. Meteor. Soc., 130, 22772292, doi:10.1256/qj.02.230.

    • Search Google Scholar
    • Export Citation
  • Lu, F., 2013: Preparing a seamless transition towards FY-4. Fourth Asia/Oceania Meteorological Satellite Users’ Conf., Melbourne, VIC, Australia, Bureau of Meteorology. [Available online at http://www.virtuallab.bom.gov.au/files/3513/8187/8770/s2_1350_Toward_a_seamless_transition_of_FY-4V2.pdf.]

  • Matricardi, M., Chevallier F. , Kelly G. , and Thepaut J.-N. , 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130, 153173, doi:10.1256/qj.02.181.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Bedka K. M. , 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus daytime GOES imagery. Mon. Wea. Rev., 134, 4978, doi:10.1175/MWR3062.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Paech S. J. , Bedka K. M. , and Litten L. A. , 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136, 48994914, doi:10.1175/2008MWR2352.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Williams J. K. , Jewett C. P. , Ahijevych D. , LeRoy A. , and Walker J. R. , 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, doi:10.1175/JAMC-D-14-0129.1.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., Minnett P. J. , and van Delst P. , 2008: Emissivity and reflection model for calculating unpolarized isotropic water surface-leaving radiance in the infrared. I: Theoretical development and calculations. Appl. Opt., 47, 37013721, doi:10.1364/AO.47.003701.

    • Search Google Scholar
    • Export Citation
  • Ouaknine, J., and Coauthors, 2013: MTG Flexible Combined Imager optical design and performances. Earth Observing Systems XVIII, J. J. Bulter, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8866), 88661A, doi:10.1117/12.2023078.

  • Qin, Z., Zou X. , and Weng F. , 2013: Evaluating added benefits of assimilating GOES imager radiance data in GSI for coastal QPFs. Mon. Wea. Rev., 141, 7592, doi:10.1175/MWR-D-12-00079.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., Matricardi M. , and Brunel P. , 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125, 14071425, doi:10.1002/qj.1999.49712555615.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and Coauthors, 2007: A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances. J. Geophys. Res., 112, D01S90, doi:10.1029/2006JD007088.

    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., Blackmore T. A. , Candy B. , Francis P. N. , and Hewison T. J. , 2013: Monitoring satellite radiance biases using NWP models. IEEE Trans. Geosci. Remote Sens., 51, 11241138, doi:10.1109/TGRS.2012.2229283.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Griffith P. , Gunshor M. M. , Daniels J. M. , Goodman S. J. , and Lebair W. J. , 2016: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00230.1, in press.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., Borbas E. E. , Knuteson R. O. , Stephenson G. R. , and Huang H.-L. , 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrieval from multispectral satellite radiances measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Search Google Scholar
    • Export Citation
  • Sherlock, V., and Saunders R. , 1999: ISEM-6: Infrared surface emissivity model for RTTOV-6. Rep. for the EUMETSAT NWP SAF, Met Office, 16 pp.

  • Stengel, M., Undén P. , Lindskog M. , Dahlgren P. , Gustafsson N. , and Bennartz R. , 2009: Assimilation of SEVIRI infrared radiances with HIRLAM 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 21002109, doi:10.1002/qj.501.

    • Search Google Scholar
    • Export Citation
  • Szyndel, M. D. E., Thépaut J.-N. , and Kelly G. , 2005: Evaluation of potential benefit of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses. Atmos. Sci. Lett., 6, 105111, doi:10.1002/asl.98.

    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., Boussetta S. , Viterbo P. , Balsamo G. , Beljaars A. , and Sandu I. , 2015: Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. J. Geophys. Res. Atmos., 120, 12 096–12 111, doi:10.1002/2015JD023812.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., 1996: Winds derived from geostationary satellite moisture channel observations: Applications and impact on numerical weather prediction. Meteor. Atmos. Phys., 60, 3746, doi:10.1007/BF01029784.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., Hayden C. M. , Nieman S. J. , Menzel W. P. , Wazong S. , and Goerss J. S. , 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, doi:10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., Olander T. L. , and Wazong S. , 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Mon. Wea. Rev., 126, 12021218, doi:10.1175/1520-0493(1998)126<1202:TIOMGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vogel, R. L., Liu Q. , Han Y. , and Weng F. , 2011: Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling. J. Geophys. Res., 116, D08105, doi:10.1029/2010JD014679.

    • Search Google Scholar
    • Export Citation
  • Weng, F., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 37993807, doi:10.1175/2007JAS2112.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and Smith W. L. , 1997: Emissivity of rough sea surface for 8–13 μm: Modeling and verification. Appl. Opt., 36, 26092619, doi:10.1364/AO.36.002609.

    • Search Google Scholar
    • Export Citation
  • Yu, F., and Wu X. , 2016: Radiometric inter-calibration between Himawari-8 AHI and S-NPP VIIRS for the solar reflective bands. Remote Sens., 8, 165, doi:10.3390/rs8030165.

    • Search Google Scholar
    • Export Citation
  • Zhuo, H., Liu Y. , and Jin J. , 2016: Improvement of land surface skin temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett., 17, 162168, doi:10.1002/asl.638.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Qin Z. , and Weng F. , 2011: Improved coastal precipitation forecasts with direct assimilation of GOES 11/12 imager radiances. Mon. Wea. Rev., 139, 37113729, doi:10.1175/MWR-D-10-05040.1.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Qin Z. , and Zheng Y. , 2015: Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev., 143, 24852505, doi:10.1175/MWR-D-14-00223.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 10 10 10

Characterization of Bias of Advanced Himawari Imager Infrared Observations from NWP Background Simulations Using CRTM and RTTOV

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland, and School of Atmospheric Sciences, and Key Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, China
  • | 3 NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland
Restricted access

Abstract

Starting in 2014, the new generation of Japanese geostationary meteorological satellites carries an Advanced Himawari Imager (AHI) to provide the observations of visible, near infrared, and infrared with much improved spatial and temporal resolutions. For applications of the AHI measurements in numerical weather prediction (NWP) data assimilation systems, the biases of the AHI brightness temperatures at channels 7–16 from the model simulations are first characterized and evaluated using both the Community Radiative Transfer Model (CRTM) and the Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV). It is found that AHI biases under a clear-sky atmosphere are independent of satellite zenith angle except for channel 7. The biases of three water vapor channels increase with scene brightness temperatures and are nearly constant except at high brightness temperatures for the remaining infrared channels. The AHI biases at all the infrared channels are less than 0.6 and 1.2 K over ocean and land, respectively. The differences in biases between RTTOV and CRTM with the land surface emissivity model used in RTTOV are small except for the upper-tropospheric water vapor channels 8 and 9 and the low-tropospheric carbon dioxide channel 16. Since the inputs used for simulations are the same for CRTM and RTTOV, the differential biases at the water vapor channels may be associated with subtle differences in forward models.

Denotes Open Access content.

Corresponding author address: Dr. Xiaolei Zou, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Court, Office 4078, College Park, MD 20740-3823. E-mail: xzou1@umd.edu.

Abstract

Starting in 2014, the new generation of Japanese geostationary meteorological satellites carries an Advanced Himawari Imager (AHI) to provide the observations of visible, near infrared, and infrared with much improved spatial and temporal resolutions. For applications of the AHI measurements in numerical weather prediction (NWP) data assimilation systems, the biases of the AHI brightness temperatures at channels 7–16 from the model simulations are first characterized and evaluated using both the Community Radiative Transfer Model (CRTM) and the Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV). It is found that AHI biases under a clear-sky atmosphere are independent of satellite zenith angle except for channel 7. The biases of three water vapor channels increase with scene brightness temperatures and are nearly constant except at high brightness temperatures for the remaining infrared channels. The AHI biases at all the infrared channels are less than 0.6 and 1.2 K over ocean and land, respectively. The differences in biases between RTTOV and CRTM with the land surface emissivity model used in RTTOV are small except for the upper-tropospheric water vapor channels 8 and 9 and the low-tropospheric carbon dioxide channel 16. Since the inputs used for simulations are the same for CRTM and RTTOV, the differential biases at the water vapor channels may be associated with subtle differences in forward models.

Denotes Open Access content.

Corresponding author address: Dr. Xiaolei Zou, Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Court, Office 4078, College Park, MD 20740-3823. E-mail: xzou1@umd.edu.
Save