• Acarreta, J. R., and Stammes P. , 2005: Calibration comparison between SCIAMACHY and MERIS onboard ENVISAT. Geosci. Remote Sens. Lett., 2, 3135, doi:10.1109/LGRS.2004.838348.

    • Search Google Scholar
    • Export Citation
  • Ayers, J. K., Nguyen L. , Smith W. L. Jr., and Minnis P. , 1998: Calibration of geostationary satellite imager data for ARM using AVHRR. Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, U.S. Dept. of Energy DOE/ER-0738, UC-402, 45–49. [Available online at http://www.arm.gov/publications/proceedings/conf08/extended_abs/ayers_jk.pdf.]

  • Berendes, T. A., Mecikalski J. R. , MacKenzie W. M. Jr., Bedka K. M. , and Nair U. S. , 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113, D20207, doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Bhatt, R., Doelling D. R. , Morstad D. , Scarino B. R. , and Gopalan A. , 2014: Desert-based absolute calibration of successive geostationary visible sensors using a daily exoatmospheric radiance model. IEEE Trans. Geosci. Remote Sens., 52, 36703682, doi:10.1109/TGRS.2013.2274594.

    • Search Google Scholar
    • Export Citation
  • Brest, C. L., Rossow W. B. , and Roiter M. D. , 1997: Update of radiance calibrations for ISCCP. J. Atmos. Oceanic Technol., 14, 10911109, doi:10.1175/1520-0426(1997)014<1091:UORCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chander, G., Mishra N. , Helder D. L. , Aaron D. B. , Angal A. , Choi T. , Xiong X. , and Doelling D. R. , 2013: Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens., 51, 12671281, doi:10.1109/TGRS.2012.2228007.

    • Search Google Scholar
    • Export Citation
  • Desormeaux, Y., Rossow W. B. , Brest C. L. , and Campbell G. G. , 1993: Normalization and calibration of geostationary satellite radiances for ISCCP. J. Atmos. Oceanic Technol., 10, 304325, doi:10.1175/1520-0426(1993)010<0304:NACOGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Minnis P. , and Nguyen L. , 2004: Calibration comparisons between SEVIRI, MODIS, and GOES data. Proceedings of the Second MSG RAO Workshop, H. Lacoste, Ed., ESA Publ. SP-582, 149154.

  • Doelling, D. R., Garber D. P. , Avey L. A. , Nguyen L. , and Minnis P. , 2007: The calibration of AVHRR visible dual gain using Meteosat-8 for NOAA-16 to 18. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS, M. D. Goldberg et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6684), 668409, doi:10.1117/12.736080.

  • Doelling, D. R., Bhatt R. , Morstad D. , and Scarino B. , 2011: Algorithm theoretical basis document (ATBD) for ray-matching technique of calibrating GEO sensors with Aqua-MODIS for GSICS. WMO, 10 pp. [Available online at http://gsics.atmos.umd.edu/pub/Development/AtbdCentral/GSICS_ATBD_DCC_NASA_2011_09.pdf.]

  • Doelling, D. R., Lukashin C. , Minnis P. , Scarino B. , and Morstad D. , 2012: Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data. Geosci. Remote Sens. Lett., 9, 119123, doi:10.1109/LGRS.2011.2161751.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2013a: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 10721090, doi:10.1175/JTECH-D-12-00136.1.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Morstad D. , Scarino B. R. , Bhatt R. , and Gopalan A. , 2013b: The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Trans. Geosci. Remote Sens., 51, 11471159, doi:10.1109/TGRS.2012.2225066.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Scarino B. R. , Morstad D. , Gopalan A. , Bhatt R. , Lukashin C. , and Minnis P. , 2013c: The intercalibration of geostationary visible imagers using operational hyperspectral SCIAMACHY radiances. IEEE Trans. Geosci. Remote Sens., 51, 12451254, doi:10.1109/TGRS.2012.2227760.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., and Coauthors, 2015a: MTSAT-1R visible imager point spread correction function, Part I: The need for, validation of, and calibration with. IEEE Trans. Geosci. Remote Sens., 53, 15131526, doi:10.1109/TGRS.2014.2344678.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., Wu A. , Xiong X. , Scarino B. R. , Bhatt R. , Haney C. O. , Morstad D. , and Gopalan A. , 2015b: The radiometric stability and scaling of collection 6 Terra- and Aqua-MODIS VIS, NIR, and SWIR spectral bands. IEEE Trans. Geosci. Remote Sens., 53, 45204535, doi:10.1109/TGRS.2015.2400928.

    • Search Google Scholar
    • Export Citation
  • Fougnie, B., and Bach R. , 2009: Monitoring of radiometric sensitivity changes of space sensors using deep convective clouds: Operational application to PARASOL. IEEE Trans. Geosci. Remote Sens., 47, 851861, doi:10.1109/TGRS.2008.2005634.

    • Search Google Scholar
    • Export Citation
  • Govaerts, Y., and Clerici M. , 2004: MSG-1/SEVIRI solar channels calibration commissioning activity report. Version 1.0, EUMETSAT Rep. EUM/MSG/TEN/04/0024, 35 pp. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_TEN_040024_SEVIRI-SOLCALIB&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Guenther, B., Xiong X. , Salomonson V. V. , Barnes W. L. , and Young J. , 2002: On-orbit performance of the Earth Observing System Moderate Resolution Imaging Spectroradiometer; first year of data. Remote Sens. Environ., 83, 1630, doi:10.1016/S0034-4257(02)00097-4.

    • Search Google Scholar
    • Export Citation
  • Ham, S.-H., and Sohn B.-J. , 2010: Assessment of the calibration performance of satellite visible channels using cloud targets: Application to Meteosat-8/9 and MTSAT-1R. Atmos. Chem. Phys., 10, 11 13111 149, doi:10.5194/acp-10-11131-2010.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Straka W. C. III, Molling C. C. , Sullivan J. T. , and Wu X. , 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, doi:10.1080/01431161.2010.496472.

    • Search Google Scholar
    • Export Citation
  • Hennon, C. C., Helms C. N. , Knapp K. R. , and Bowen A. R. , 2011: An objective algorithm for detecting and tracking tropical cloud clusters: Implications for tropical cyclogenesis prediction. J. Atmos. Oceanic Technol., 28, 10071018, doi:10.1175/2010JTECHA1522.1.

    • Search Google Scholar
    • Export Citation
  • Henry, P., Chander G. , Fougnie B. , Thomas C. , and Xiong X. , 2013: Assessment of spectral band impact on intercalibration over desert sites using simulation based on EO-1 Hyperion data. IEEE Trans. Geosci. Remote Sens., 51, 12971308, doi:10.1109/TGRS.2012.2228210.

    • Search Google Scholar
    • Export Citation
  • Hewison, T. J., Wu X. , Yu F. , Tahara Y. , Hu X. , Kim D. , and Koenig M. , 2013: GSICS inter-calibration of infrared channels of geostationary imagers using Metop/IASI. IEEE Trans. Geosci. Remote Sens., 51, 11601170, doi:10.1109/TGRS.2013.2238544.

    • Search Google Scholar
    • Export Citation
  • Hong, G., Heygster G. , Notholt J. , and Buehler S. A. , 2008: Interannual to diurnal variations in tropical and subtropical deep convective clouds and convective overshooting from seven years of AMSU-B measurements. J. Climate, 21, 41684189, doi:10.1175/2008JCLI1911.1.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., Cao C. , Sullivan J. , Levin R. , Wu X. , and Galvin R. , 2005: The usefulness of in-flight measurements of space count to improve calibration of the AVHRR solar reflectance bands. J. Atmos. Oceanic Technol., 22, 180200, doi:10.1175/JTECH-1691.1.

    • Search Google Scholar
    • Export Citation
  • Inamdar, A. K., and Knapp K. R. , 2015: Intercomparison of independent calibration techniques applied to the visible channel of the ISCCP B1 data. J. Atmos. Oceanic Technol., 32, 12251240, doi:10.1175/JTECH-D-14-00040.1.

    • Search Google Scholar
    • Export Citation
  • Jourdan, O., Kikhanovsky A. A. , and Burrows J. P. , 2007: Calibration of SCIAMACHY using AATSR top-of-atmosphere reflectance over a hurricane. Geosci. Remote Sens. Lett., 4, 812, doi:10.1109/LGRS.2006.881726.

    • Search Google Scholar
    • Export Citation
  • Khlopenkov, K. V., Doelling D. R. , and Okuyama A. , 2015: MTSAT-1R visible imager point spread function correction, Part II: Theory. IEEE Trans. Geosci. Remote Sens., 53, 15041512, doi:10.1109/TGRS.2014.2344627.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-R., Ham S.-H. , Kim D. , and Sohn B.-J. , 2014: Post-flight radiometric calibration of the Korean geostationary satellite COMS meteorological imager. Asia-Pac. J. Atmospheric Sci., 50, 201210, doi:10.1007/s13143-014-0008-7.

    • Search Google Scholar
    • Export Citation
  • Koelemeijer, R. B. A., Stamnes P. , and Watts P. D. , 1998: Comparison of visible calibrations of GOME and ATSR-2. Remote Sens. Environ., 63, 279288, doi:10.1016/S0034-4257(97)00161-2.

    • Search Google Scholar
    • Export Citation
  • LaFrance, B., Hagolle O. , Bonnel B. , Fouquart Y. , and Brogniez G. , 2002: Interband calibration over clouds for POLDER space sensor. IEEE Trans. Geosci. Remote Sens., 40, 131142, doi:10.1109/36.981355.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., and Coauthors, 1999: The Man computer Interactive Data Access System: 25 years of interactive processing. Bull. Amer. Meteor. Soc., 80, 271284, doi:10.1175/1520-0477(1999)080<0271:TMCIDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J. F., Simpson J. J. , and Jin Z. , 1999: Satellite calibration using a collocated nadir observation technique: Theoretical basis and application to the GMS-5 Pathfinder benchmark period. IEEE Trans. Geosci. Remote Sens., 37, 499507, doi:10.1109/36.739100.

    • Search Google Scholar
    • Export Citation
  • Meirink, J. F., Roebeling R. A. , and Stammes P. , 2013: Inter-calibration of polar imager solar channels using SEVIRI. Atmos. Meas. Tech., 6, 24952508, doi:10.5194/amt-6-2495-2013.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Harrison E. F. , 1984: Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: November 1978 radiative parameters. J. Climate Appl. Meteor., 23, 10321051, doi:10.1175/1520-0450(1984)023<1032:DVORCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., Smith W. L. Jr., Garber D. P. , Ayers J. K. , and Doelling D. R. , 1994: Cloud properties derived from GOES-7 for spring 1994 ARM intensive observing period using version 1.0.0 of ARM satellite data analysis program. NASA Reference Publ. NASA RP-1366, 59 pp.

  • Minnis, P., Nguyen L. , Doelling D. R. , Young D. F. , Miller W. F. , and Kratz D. P. , 2002: Rapid calibration of operational and research meteorological satellite imagers. Part I: Evaluation of research satellite visible channels as references. J. Atmos. Oceanic Technol., 19, 12331249, doi:10.1175/1520-0426(2002)019<1233:RCOOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morstad, D. L., Doelling D. R. , Bhatt R. , and Scarino B. , 2011: The CERES calibration strategy of the geostationary visible channels for CERES cloud and flux products. Earth Observing Systems XVI, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8153), 815316, doi:10.1117/12.894650.

  • Nagaraja Rao, C. R., Zhang N. , and Sullivan J. T. , 2001: Inter-calibration of meteorological satellite sensors in the visible and near-infrared. Adv. Space Res., 28, 310, doi:10.1016/S0273-1177(01)00262-9.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L., Minnis P. , Ayers J. K. , Smith W. L. Jr., and Ho S. P. , 1999: Intercalibration of geostationary and polar satellite data using AVHRR, VIRS, and ATSR-2 data. Proc. 10th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 405408.

  • Nguyen, L., Minnis P. , Ayers J. K. , and Doelling D. R. , 2001: Intercalibration of meteorological satellite imagers using VIRS, ATSR-2, and MODIS. Proc. 11th Conf. on Satellite Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc., P4.3. [Available online at https://ams.confex.com/ams/11satellite/techprogram/paper_24406.htm.]

  • Nguyen, L., Doelling D. R. , Minnis P. , and Ayers J. K. , 2004: Rapid technique to cross-calibrate satellite imager visible channels. Earth Observing Systems IX, W. L. Barnes and J. J. Butler, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5542), 227, doi:10.1117/12.560138.

  • Okuyama, A., 2011: Outlined algorithm theoretical basis for MTSAT visible calibration for GSICS (liquid cloud method). GSICS Algorithm Theoretical Basis Doc., 6 pp. [Available online at http://gsics.atmos.umd.edu/pub/Development/AtbdCentral/MTSAT_vis_vicarious_calibration_outline.pdf.]

  • Rutan, D., Kato S. , Doelling D. , Rose F. , Nguyen L. , Caldwell T. , and Loeb N. , 2015: CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Oceanic Technol., 32, 11211143, doi:10.1175/JTECH-D-14-00165.1.

    • Search Google Scholar
    • Export Citation
  • Scarino, B. R., Doelling D. R. , Morstad D. L. , Bhatt R. , Gopalan A. , Lukashin C. , and Minnis P. , 2012: Using SCIAMACHY to improve corrections for spectral band differences when transferring calibration between visible sensors. Earth Observing Systems XVII, J. J. Butler, X. Xiong, and X. Gu, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8510), 85100Q, doi:10.1117/12.929767.

  • Scarino, B. R., Doelling D. R. , Minnis P. , Gopalan A. , Chee T. , Bhatt R. , Lukashin C. , and Haney C. , 2016: A web-based tool for calculating spectral band difference adjustment factors derived from SCIAMACHY hyperspectral data. IEEE Trans. Geosci. Remote Sens., 54, 25292542, doi:10.1109/TGRS.2015.2502904.

    • Search Google Scholar
    • Export Citation
  • Skupin, J., Noël S. , Wuttke M. W. , Gottwald M. , Bovensmann H. , Weber M. , and Burrows J. P. , 2005: SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Adv. Space Res., 35, 370375, doi:10.1016/j.asr.2005.03.036.

    • Search Google Scholar
    • Export Citation
  • Slater, P. N., Biggar S. F. , Holm R. G. , Jackson R. D. , Moa Y. , Moran M. S. , Palmer J. M. , and Yuan B. , 1987: Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens. Environ., 22, 1137, doi:10.1016/0034-4257(87)90026-5.

    • Search Google Scholar
    • Export Citation
  • Teillet, P. M., Fedosejevs G. , Gauthier R. P. , O’Niell N. T. , Thome K. J. , Biggar S. F. , Ripley H. , and Meygret A. , 2001: A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data. Remote Sens. Environ., 77, 304327, doi:10.1016/S0034-4257(01)00211-5.

    • Search Google Scholar
    • Export Citation
  • Vermote, E., and Kaufman Y. J. , 1995: Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views. Int. J. Remote Sens., 16, 23172340, doi:10.1080/01431169508954561.

    • Search Google Scholar
    • Export Citation
  • Weinreb, M., Jamieson M. , Fulton N. , Chen Y. , Johnson J.-X. , Bremer J. , Smith C. , and Baucom J. , 1997: Operational calibration of Geostationary Operational Environmental Satellite-8 and -9 imagers and sounders. Appl. Opt., 36, 68956904, doi:10.1364/AO.36.006895.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. III, Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Doelling D. R. , Young D. F. , Loeb N. G. , Garber D. P. , and MacDonnell D. G. , 2008: Climate quality broadband and narrowband solar reflected radiance calibration between sensors in orbit. 2008 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, IEEE, I-257I-260, doi:10.1109/IGARSS.2008.4778842.

  • Wu, A., Xiong X. , Doelling D. R. , Morstad D. , Angal A. , and Bhatt R. , 2013: Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR spectral bands’ calibration stability. IEEE Trans. Geosci. Remote Sens., 51, 43304338, doi:10.1109/TGRS.2012.2226588.

    • Search Google Scholar
    • Export Citation
  • Wu, X., Qian H. , Yu F. , and Beck T. , 2011: Vicarious calibration of GOES visible channel using GOME-2. 2011 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, IEEE, 10331035, doi:10.1109/IGARSS.2011.6049310.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 7 7 7

Improvements to the Geostationary Visible Imager Ray-Matching Calibration Algorithm for CERES Edition 4

View More View Less
  • 1 Climate Science Branch, NASA Langley Research Center, Hampton, Virginia
  • | 2 Science Systems and Applications, Inc., Hampton, Virginia
Restricted access

Abstract

The Clouds and the Earth’s Radiant Energy System (CERES) project relies on geostationary imager–derived TOA broadband fluxes and cloud properties to account for the regional diurnal fluctuations between the Terra and Aqua CERES and MODIS measurements. The CERES project employs a ray-matching calibration algorithm in order to transfer the Aqua MODIS calibration to the geostationary (GEO) imagers, thereby allowing the derivation of consistent fluxes and cloud retrievals across the 16 GEO imagers utilized in the CERES record. The CERES Edition 4 processing scheme grants the opportunity to recalibrate the GEO record using an improved GEO/MODIS all-sky ocean ray-matching algorithm. Using a graduated angle matching method, which is most restrictive for anisotropic clear-sky ocean radiances and least restrictive for isotropic bright cloud radiances, reduces the bidirectional bias while preserving the dynamic range. Furthermore, SCIAMACHY hyperspectral radiances are used to account for both the solar incoming and Earth-reflected spectra in order to correct spectral band differences. As a result, the difference between the linear regression offset and the maintained GEO space count was reduced, and the calibration slopes computed from the linear fit and the regression through the space count agreed to within 0.4%. A deep convective cloud (DCC) ray-matching algorithm is also presented. The all-sky ocean and DCC ray-matching timeline gains are within 0.7% of one another. Because DCC are isotropic and the brightest, Earth targets with near-uniform visible spectra, the temporal standard error of GEO imager gains, are reduced by up to 60% from that of all-sky ocean targets.

Corresponding author address: David Doelling, NASA Langley Research Center, Bldg. 1250, Mail Stop 420, Hampton, VA 23681-2199. E-mail: david.r.doelling@nasa.gov

Abstract

The Clouds and the Earth’s Radiant Energy System (CERES) project relies on geostationary imager–derived TOA broadband fluxes and cloud properties to account for the regional diurnal fluctuations between the Terra and Aqua CERES and MODIS measurements. The CERES project employs a ray-matching calibration algorithm in order to transfer the Aqua MODIS calibration to the geostationary (GEO) imagers, thereby allowing the derivation of consistent fluxes and cloud retrievals across the 16 GEO imagers utilized in the CERES record. The CERES Edition 4 processing scheme grants the opportunity to recalibrate the GEO record using an improved GEO/MODIS all-sky ocean ray-matching algorithm. Using a graduated angle matching method, which is most restrictive for anisotropic clear-sky ocean radiances and least restrictive for isotropic bright cloud radiances, reduces the bidirectional bias while preserving the dynamic range. Furthermore, SCIAMACHY hyperspectral radiances are used to account for both the solar incoming and Earth-reflected spectra in order to correct spectral band differences. As a result, the difference between the linear regression offset and the maintained GEO space count was reduced, and the calibration slopes computed from the linear fit and the regression through the space count agreed to within 0.4%. A deep convective cloud (DCC) ray-matching algorithm is also presented. The all-sky ocean and DCC ray-matching timeline gains are within 0.7% of one another. Because DCC are isotropic and the brightest, Earth targets with near-uniform visible spectra, the temporal standard error of GEO imager gains, are reduced by up to 60% from that of all-sky ocean targets.

Corresponding author address: David Doelling, NASA Langley Research Center, Bldg. 1250, Mail Stop 420, Hampton, VA 23681-2199. E-mail: david.r.doelling@nasa.gov
Save