Comparison of Meteorological Radar Signal Detectability with Noncoherent and Spectral-Based Processing

James B. Mead ProSensing Inc., Amherst, Massachusetts

Search for other papers by James B. Mead in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Detection of meteorological radar signals is often carried out using power averaging with noise subtraction either in the time domain or the spectral domain. This paper considers the relative signal processing gain of these two methods, showing a clear advantage for spectral-domain processing when normalized spectral width is less than ~0.1. A simple expression for the optimal discrete Fourier transform (DFT) length to maximize signal processing gain is presented that depends only on the normalized spectral width and the time-domain weighting function. The relative signal processing gain between noncoherent power averaging and spectral processing is found to depend on a variety of parameters, including the radar wavelength, spectral width, available observation time, and the false alarm rate. Expressions presented for the probability of detection for noncoherent and spectral-based processing also depend on these same parameters. Results of this analysis show that DFT-based processing can provide a substantial advantage in signal processing gain and probability of detection, especially when the normalized spectral width is small and when a large number of samples are available. Noncoherent power estimation can provide superior probability of detection when the normalized spectral width is greater than ~0.1, especially when the desired false alarm rate exceeds 10%.

Denotes Open Access content.

Corresponding author address: James B. Mead, ProSensing Inc., 107 Sunderland Road, Amherst, MA 01002. E-mail: mead@prosensing.com

Abstract

Detection of meteorological radar signals is often carried out using power averaging with noise subtraction either in the time domain or the spectral domain. This paper considers the relative signal processing gain of these two methods, showing a clear advantage for spectral-domain processing when normalized spectral width is less than ~0.1. A simple expression for the optimal discrete Fourier transform (DFT) length to maximize signal processing gain is presented that depends only on the normalized spectral width and the time-domain weighting function. The relative signal processing gain between noncoherent power averaging and spectral processing is found to depend on a variety of parameters, including the radar wavelength, spectral width, available observation time, and the false alarm rate. Expressions presented for the probability of detection for noncoherent and spectral-based processing also depend on these same parameters. Results of this analysis show that DFT-based processing can provide a substantial advantage in signal processing gain and probability of detection, especially when the normalized spectral width is small and when a large number of samples are available. Noncoherent power estimation can provide superior probability of detection when the normalized spectral width is greater than ~0.1, especially when the desired false alarm rate exceeds 10%.

Denotes Open Access content.

Corresponding author address: James B. Mead, ProSensing Inc., 107 Sunderland Road, Amherst, MA 01002. E-mail: mead@prosensing.com
Save
  • Abramowitz, M., and Stegun I. A. , Eds., 1964: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series, Vol. 55, National Bureau of Standards, 1046 pp.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Miller M. A. , Albrecht B. A. , Ackerman T. P. , Verlinde J. , Babb D. M. , Peters R. M. , and Syrett W. J. , 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12, 201–229, doi:10.1175/1520-0426(1995)012<0201:AEOAGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DOE, 2012: Scanning ARM cloud radar (X/Ka/W-SACR) handbook. U.S. Dept. of Energy Tech. Rep. DOE/SC-ARM/TR-113, 30 pp. [Available online at http://www.arm.gov/publications/tech_reports/handbooks/wsacr_handbook.pdf?id=65.]

  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Farley, D. T., 1985: On-line data processing techniques for MST radars. Radio Sci., 20, 1177–1184, doi:10.1029/RS020i006p01177.

  • Gage, K. S., 1990: Radar observations of the free atmosphere: Structure and dynamics. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 534–565, doi:10.1007/978-1-935704-15-7_37.

  • Gage, K. S., and Balsley B. B. , 1978: Doppler radar probing of the clear atmosphere. Bull. Amer. Meteor. Soc., 59, 1074–1093, doi:10.1175/1520-0477(1978)059<1074:DRPOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., Zrnić D. S. , and Yu T. , 2012: Threshold calculation for coherent detection in dual-polarization weather radar. IEEE Trans. Aerosp. Electron. Syst., 48, 2198–2215, doi:10.1109/TAES.2012.6237588.

    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., Keränen R. , and Zrnić D. S. , 2014: Assessment of censoring using coherency-based detectors on dual-polarized weather radar. J. Atmos. Oceanic Technol., 31, 1694–1703, doi:10.1175/JTECH-D-13-00074.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, R. J., and Passarelli R. E. , 1990: Signal processing for atmospheric radars. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 199–234.

  • Keränen, R., and Chandrasekar V. , 2014: Detection and estimation of radar reflectivity from weak echo of precipitation in dual-polarized weather radars. J. Atmos. Oceanic Technol., 31, 1677–1693, doi:10.1175/JTECH-D-13-00155.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , Clothiaux E. E. , Miller M. A. , Johnson K. L. , and Moran K. P. , 2005: The Atmospheric Radiation Measurement program cloud profiling radars: An evaluation of signal processing and sampling strategies. J. Atmos. Oceanic Technol., 22, 930–948, doi:10.1175/JTECH1749.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Rémillard J. , Luke E. , and Szyrmer W. , 2011: Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res., 116, D13201, doi:10.1029/2010JD015237.

    • Search Google Scholar
    • Export Citation
  • Lyons, R. G., 2004: Understanding Digital Signal Processing. 2nd ed. Prentice Hall, 663 pp.

  • Lyons, R. G., 2011: Reducing FFT scalloping loss errors without multiplication. IEEE Signal Process. Mag., 28, 112–116, doi:10.1109/MSP.2010.939845.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Hitschfeld W. , 1953: Interpretation of the fluctuating echo from randomly distributed scatterers. Part 1. Can. J. Phys., 31, 962–994, doi:10.1139/p53-084.

    • Search Google Scholar
    • Export Citation
  • Mead, J. B., 2010: MMCR calibration study. U.S. Dept. of Energy Tech. Rep. DOE/SC-ARM/TR-088, 13 pp. [Available online at https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-088.pdf.]

  • Papoulis, A., 1984: Probability, Random Variables, and Stochastic Processes. 2nd ed. McGraw-Hill, 576 pp.

  • Prahbu, K. M. M., 2014: Window Functions and Their Applications in Signal Processing. CRC Press, 404 pp.

  • Sirmans, D., and Bumgarner B. , 1975: Numerical comparison of five mean frequency estimators. J. Appl. Meteor., 14, 991–1003, doi:10.1175/1520-0450(1975)014<0991:NCOFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skolnik, M. I., Ed., 1990: Radar Handbook. 2nd ed. McGraw-Hill, 1163 pp.

  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1982: Radar Remote Sensing and Surface Scattering and Emission Theory. Vol. 2, Microwave Remote Sensing: Active and Passive, Vol. II, Advanced Book Program, Addison-Wesley, 609 pp.

  • Watkins, T. H., 2012: The nature of the dependence of the expected value of the sample maximum on sample size. [Available online at http://www.sjsu.edu/faculty/watkins/samplemax3.htm.]

  • Wolfram, 2012: Chi-square distribution. Wolfram MathWorld. [Available online at http://mathworld.wolfram.com/Chi-SquaredDistribution.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 831 422 131
PDF Downloads 491 77 2