FluxEngine: A Flexible Processing System for Calculating Atmosphere–Ocean Carbon Dioxide Gas Fluxes and Climatologies

Jamie D. Shutler * University of Exeter, Penryn, Cornwall, United Kingdom

Search for other papers by Jamie D. Shutler in
Current site
Google Scholar
PubMed
Close
,
Peter E. Land Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom

Search for other papers by Peter E. Land in
Current site
Google Scholar
PubMed
Close
,
Jean-Francois Piolle Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, F-29280, Ifremer, University of Brest, CNRS, IRD, Brest, France

Search for other papers by Jean-Francois Piolle in
Current site
Google Scholar
PubMed
Close
,
David K. Woolf Heriot-Watt University, Edinburgh, United Kingdom

Search for other papers by David K. Woolf in
Current site
Google Scholar
PubMed
Close
,
Lonneke Goddijn-Murphy Environmental Research Institute, North Highland College, University of the Highlands and Islands, Thurso, Caithness, United Kingdom

Search for other papers by Lonneke Goddijn-Murphy in
Current site
Google Scholar
PubMed
Close
,
Frederic Paul Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, F-29280, Ifremer, University of Brest, CNRS, IRD, Brest, France

Search for other papers by Frederic Paul in
Current site
Google Scholar
PubMed
Close
,
Fanny Girard-Ardhuin Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, F-29280, Ifremer, University of Brest, CNRS, IRD, Brest, France

Search for other papers by Fanny Girard-Ardhuin in
Current site
Google Scholar
PubMed
Close
,
Bertrand Chapron Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, F-29280, Ifremer, University of Brest, CNRS, IRD, Brest, France

Search for other papers by Bertrand Chapron in
Current site
Google Scholar
PubMed
Close
, and
Craig J. Donlon ** European Space Agency, Noordwijk, Netherlands

Search for other papers by Craig J. Donlon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The air–sea flux of greenhouse gases [e.g., carbon dioxide (CO2)] is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher-resolution calculations of these gas fluxes are required if researchers are to fully understand and predict future climate. Satellite Earth observation is able to provide large spatial-scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific community. Fortunately, the development of cloud computing can provide a solution. This paper describes an open-source air–sea CO2 flux processing toolbox called the “FluxEngine,” designed for use on a cloud-computing infrastructure. The toolbox allows users to easily generate global and regional air–sea CO2 flux data from model, in situ, and Earth observation data, and its air–sea gas flux calculation is user configurable. Its current installation on the Nephalae Cloud allows users to easily exploit more than 8 TB of climate-quality Earth observation data for the derivation of gas fluxes. The resultant netCDF data output files contain >20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, which verifies the air–sea CO2 flux calculations; demonstrates the use of the tools for studying global and shelf sea air–sea fluxes; and describes future developments.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Jamie D. Shutler, Department of Geography, University of Exeter, Peter Lanyon Building, Treliever Road, Penryn, Cornwall TR10 9FE, United Kingdom. E-mail: j.d.shutler@exeter.ac.uk

Abstract

The air–sea flux of greenhouse gases [e.g., carbon dioxide (CO2)] is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher-resolution calculations of these gas fluxes are required if researchers are to fully understand and predict future climate. Satellite Earth observation is able to provide large spatial-scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific community. Fortunately, the development of cloud computing can provide a solution. This paper describes an open-source air–sea CO2 flux processing toolbox called the “FluxEngine,” designed for use on a cloud-computing infrastructure. The toolbox allows users to easily generate global and regional air–sea CO2 flux data from model, in situ, and Earth observation data, and its air–sea gas flux calculation is user configurable. Its current installation on the Nephalae Cloud allows users to easily exploit more than 8 TB of climate-quality Earth observation data for the derivation of gas fluxes. The resultant netCDF data output files contain >20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, which verifies the air–sea CO2 flux calculations; demonstrates the use of the tools for studying global and shelf sea air–sea fluxes; and describes future developments.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Jamie D. Shutler, Department of Geography, University of Exeter, Peter Lanyon Building, Treliever Road, Penryn, Cornwall TR10 9FE, United Kingdom. E-mail: j.d.shutler@exeter.ac.uk
Save
  • Bakker, D., 2014: Underway physical oceanography and carbon dioxide measurements during POLARSTERN cruise ANT-XVIII/1. School of Environmental Sciences, University of East Anglia, accessed 17 March 2016, doi:10.1594/PANGAEA.812023.

  • Bakker, D., and Coauthors, 2014: An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth Syst. Sci. Data, 6, 6990, doi:10.5194/essd-6-69-2014.

    • Search Google Scholar
    • Export Citation
  • Bange, H. W., 2006: The importance of oceanic nitrous oxide emissions. Atmos. Environ., 40, 198199, doi:10.1016/j.atmosenv.2005.09.030.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T. A., and Borges A. V. , 2009: Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res. II, 56, 578590, doi:10.1016/j.dsr2.2009.01.001.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T. A., Huang T.-H. , Chen Y.-C. , Bai Y. , He X. , and Kang Y. , 2013: Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10, 65096544, doi:10.5194/bg-10-6509-2013.

    • Search Google Scholar
    • Export Citation
  • de Haas, H., Weering T. C. E. van , and de Stigter H. , 2002: Organic carbon in shelf seas: Sinks or sources, processes and products. Cont. Shelf Res., 22, 691717, doi:10.1016/S0278-4343(01)00093-0.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Minnett P. J. , Gentemann C. , Nightingale T. J. , Barton I. J. , Ward B. , and Murray M. J. , 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353369, doi:10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., Martin M. , Stark J. D. , Roberts-Jones J. , Fiedler E. , and Wimmer W. , 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140–158, doi:10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Fangohr, S., and Woolf D. K. , 2007: Application of new parameterizations of gas transfer velocity and their impact on regional and global CO2 budgets. J. Mar. Syst., 66, 195203, doi:10.1016/j.jmarsys.2006.01.012.

    • Search Google Scholar
    • Export Citation
  • Fangohr, S., Woolf D. K. , Jeffery C. D. , and Robinson I. S. , 2008: Calculating long-term global air-sea flux of carbon dioxide using scatterometer, passive microwave, and model re-analysis wind data. J. Geophys. Res., 113, C09032, doi:10.1029/2005JC003376.

    • Search Google Scholar
    • Export Citation
  • Frigstad, H., Andersen T. , Hessen D. O. , Naustvoll L.-J. , Johnsen T. M. , and Bellerby R. G. J. , 2011: Seasonal variation in marine C:N:P stoichiometry: Can the composition of seston explain stable Redfield ratios? Biogeosciences, 8, 29172933, doi:10.5194/bg-8-2917-2011.

    • Search Google Scholar
    • Export Citation
  • Goddijn-Murphy, L., Woolf D. K. , and Marandino C. A. , 2012: Space-based retrievals of air-sea gas transfer velocity using altimeters: Calibration for dimethyl sulfide. J. Geophys. Res., 117, C08028, doi:10.1029/2011JC007535.

    • Search Google Scholar
    • Export Citation
  • Goddijn-Murphy, L., Woolf D. K. , Bertrand C. , and Queffelou P. , 2013: Improvements to estimating the air–sea gas transfer velocity by using dual-frequency, altimeter backscatter. Remote Sens. Environ., 139, 1–5, doi:10.1016/j.rse.2013.07.026.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , and Adler R. F. , 2012: Global Precipitation Climatology Project monthly product v2.2. National Climatic Data Center, accessed 17 March 2016. [Available online at http://www.ncdc.noaa.gov/wdc/wdcamet-ncdc.html.]

  • Johnson, M. T., 2010: A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci., 6, 913932, doi:10.5194/os-6-913-2010.

    • Search Google Scholar
    • Export Citation
  • Kettle, H., and Merchant C. J. , 2005: Systematic errors in global air-sea CO2 flux caused by temporal averaging of sea-level pressure. Atmos. Chem. Phys., 5, 14591466, doi:10.5194/acp-5-1459-2005.

    • Search Google Scholar
    • Export Citation
  • Lana, A., and Coauthors, 2011: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles, 25, GB1004, doi:10.1029/2010GB003850.

    • Search Google Scholar
    • Export Citation
  • Land, P. E., Shutler J. D. , Cowling R. D. , Woolf D. K. , Walker P. , Findlay H. S. , Upstill-Goddard R. C. , and Donlon C. J. , 2013: Climate change impacts on air–sea fluxes of CO2 in three Arctic seas: As sensitivity study using Earth observation. Biogeosciences, 10, 81098128, doi:10.5194/bg-10-8109-2013.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831836, doi:10.1038/ngeo689.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2014: Global carbon budget 2013. Earth Syst. Sci. Data, 6, 235263, doi:10.5194/essdd-6-689-2013.

  • Le Quéré, C., and Coauthors, 2015: Global carbon budget 2014. Earth Syst. Sci. Data, 7, 4785, doi:10.5194/essd-7-47-2015.

  • Loose, B., McGillis W. R. , Schlosser P. , Perovich D. , and Takahashi T. , 2009: Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett., 36, L05603, doi:10.1029/2008GL036318.

    • Search Google Scholar
    • Export Citation
  • Maritorena, S., d’Andon O. H. F. , Antoine M. , and Siegel D. A. , 2010: Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues. Remote Sens. Environ., 114, 17911804, doi:10.1016/j.rse.2010.04.002.

    • Search Google Scholar
    • Export Citation
  • McGillis, W. R., and Wanninkhof R. , 2006: Aqueous CO2 gradients for air–sea flux estimates. Mar. Chem., 98, 100108, doi:10.1016/j.marchem.2005.09.003.

    • Search Google Scholar
    • Export Citation
  • McGillis, W. R., Edson J. B. , Hare J. E. , and Fairall C. W. , 2001: Direct covariance air-sea CO2 fluxes. J. Geophys. Res., 106, 16 72916 745, doi:10.1029/2000JC000506.

    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2012: A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers. J. Geophys. Res., 117, C12013, doi:10.1029/2012JC008400.

    • Search Google Scholar
    • Export Citation
  • Nightingale, P., Malin G. , Law C. , Watson A. J. , Liss P. L. , Liddicoat M. , Boutin J. , and Goddard R. U. , 2000: In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14, 373387, doi:10.1029/1999GB900091.

    • Search Google Scholar
    • Export Citation
  • Pfeil, B., and Coauthors, 2013: A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data, 5, 125143, doi:10.5194/essd-5-125-2013.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, doi:10.1126/science.1097403.

  • Shutler, J. D., and Coauthors, 2011: Evaluating the ability of a hydrodynamic ecosystem model to capture inter- and intra-annual spatial characteristics of chlorophyll-a in the north east Atlantic. J. Mar. Syst., 88, 169182, doi:10.1016/j.jmarsys.2011.03.013.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2002: Global air–sea CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 16011622, doi:10.1016/S0967-0645(02)00003-6.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2 and net sea–air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, doi:10.1016/j.dsr2.2008.12.009.

    • Search Google Scholar
    • Export Citation
  • Thomas, H., Bozec Y. , Elkalay K. , and de Baar H. J. W. , 2004: Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 10051008, doi:10.1126/science.1095491.

    • Search Google Scholar
    • Export Citation
  • Wakelin, S., Holt J. T. , Blackford J. , Allen J. I. , Butenschön M. , and Artioli Y. , 2012: Modeling the carbon fluxes of the northwest European continental shelf: Validation and budgets. J. Geophys. Res., 117, 05020, doi:10.1029/2011JC007402.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, 73737382, doi:10.1029/92JC00188.

    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., Asher W. E. , Ho D. T. , Sweeney C. , and McGillis W. R. , 2009: Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci., 1, 213244, doi:10.1146/annurev.marine.010908.163742.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and Coauthors, 2009: Tracking the variable North Atlantic sink for atmospheric CO2. Science, 326, 13911393, doi:10.1126/science.1177394.

    • Search Google Scholar
    • Export Citation
  • Weiss, R. F., and Price B. A. , 1980: Nitrous oxide solubility in water and seawater. Mar. Chem., 8, 347359, doi:10.1016/0304-4203(80)90024-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1922 500 67
PDF Downloads 1108 177 15