Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR)

Atsushi Hamada Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Atsushi Hamada in
Current site
Google Scholar
PubMed
Close
and
Yukari N. Takayabu Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan

Search for other papers by Yukari N. Takayabu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper demonstrates the impact of the enhancement in detectability by the dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core observatory. By setting two minimum detectable reflectivities—12 and 18 dBZ—artificially to 6 months of GPM DPR measurements, the precipitation occurrence and volume increase by ~21.1% and ~1.9%, respectively, between 40°S and 40°N.

GPM DPR is found to be able to detect light precipitation, which mainly consists of two distinct types. One type is shallow precipitation, which is most significant for convective precipitation over eastern parts of subtropical oceans, where deep convection is typically suppressed. The other type is probably associated with lower parts of anvil clouds associated with organized precipitation systems.

While these echoes have lower reflectivities than the official value of the minimum detectable reflectivity, they are found to mostly consist of true precipitation signals, suggesting that the official value may be too conservative for some sort of meteorological analyses. These results are expected to further the understanding of both global energy and water budgets and the diabatic heating distribution.

Denotes Open Access content.

Corresponding author address: Atsushi Hamada, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: a-hamada@aori.u-tokyo.ac.jp

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Abstract

This paper demonstrates the impact of the enhancement in detectability by the dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core observatory. By setting two minimum detectable reflectivities—12 and 18 dBZ—artificially to 6 months of GPM DPR measurements, the precipitation occurrence and volume increase by ~21.1% and ~1.9%, respectively, between 40°S and 40°N.

GPM DPR is found to be able to detect light precipitation, which mainly consists of two distinct types. One type is shallow precipitation, which is most significant for convective precipitation over eastern parts of subtropical oceans, where deep convection is typically suppressed. The other type is probably associated with lower parts of anvil clouds associated with organized precipitation systems.

While these echoes have lower reflectivities than the official value of the minimum detectable reflectivity, they are found to mostly consist of true precipitation signals, suggesting that the official value may be too conservative for some sort of meteorological analyses. These results are expected to further the understanding of both global energy and water budgets and the diabatic heating distribution.

Denotes Open Access content.

Corresponding author address: Atsushi Hamada, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan. E-mail: a-hamada@aori.u-tokyo.ac.jp

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., Iguchi T. , Kumagai H. , and Okamoto K. , 1997: Rain type classification algorithm for TRMM precipitation radar. IGARSS’97: 1997 International Geoscience and Remote Sensing Symposium; Remote Sensing—A Scientific Vision for Sustainable Development, T. I. Stein, Ed., Vol. 4, IEEE, 1633–1635, doi:10.1109/IGARSS.1997.608993.

  • Behrangi, A., Stephens G. , Adler R. F. , Huffman G. J. , Lambrigtsen B. , and Lebsock M. , 2014a: An update on the oceanic precipitation rate and its zonal distribution in light of advanced observations from space. J. Climate, 27, 39573965, doi:10.1175/JCLI-D-13-00679.1.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., Tian Y. , Lambrigtsen B. H. , and Stephens G. L. , 2014b: What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? Water Resour. Res., 50, 48934905, doi:10.1002/2013WR014566.

    • Search Google Scholar
    • Export Citation
  • Berg, W., L’Ecuyer T. , and Haynes J. M. , 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Burdanowitz, J., Nuijens L. , Stevens B. , and Klepp C. , 2015: Evaluating light rain from satellite- and ground-based remote sensing data over the subtropical north Atlantic. J. Appl. Meteor. Climatol., 54, 556572, doi:10.1175/JAMC-D-14-0146.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Draper, D. W., Newell D. A. , Wentz F. J. , Krimchansky S. , and Skofronick-Jackson G. M. , 2015: The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 8, 34523462, doi:10.1109/JSTARS.2015.2403303.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and Hodges K. I. , 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. International Geophysics Series, Vol. 53, Academic Press, 573 pp.

  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Seto S. , Meneghini R. , Yoshida N. , Awaka J. , Le M. , Chandrasekar V. , and Kubota T. , 2015: GPM/DPR level-2. Algorithm Theoretical Basis Doc., 68 pp. [Available online at http://pps.gsfc.nasa.gov/Documents/ATBD_DPR_2015_whole_a.pdf.]

  • JAXA, 2014: Caveats for the DPR Level 1 and Level 2 products. JAXA, 13 pp. [Available online at http://www.eorc.jaxa.jp/GPM/doc/product/Caveats_DPRL1L2_product_for_LR2.pdf.]

  • Kelley, O. A., 2014: Where the least rainfall occurs in the Sahara Desert, the TRMM radar reveals a different pattern of rainfall each season. J. Climate, 27, 69196939, doi:10.1175/JCLI-D-14-00145.1.

    • Search Google Scholar
    • Export Citation
  • Kojima, M., and Coauthors, 2012: Dual-frequency precipitation radar (DPR) development on the global precipitation measurement (GPM) core observatory. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II, H. Shimoda et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8528), 85281A, doi:10.1117/12.976823.

  • Le, M., and Chandrasekar V. , 2013: Hydrometeor profile characterization method for dual-frequency precipitation radar onboard the GPM. IEEE Trans. Geosci. Remote Sens., 51, 36483658, doi:10.1109/TGRS.2012.2224352.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and Houze R. A. Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, doi:10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and Hou A. Y. , 2012: Estimation of rain intensity spectra over the continental United States using ground radar–gauge measurements. J. Climate, 25, 19011915, doi:10.1175/JCLI-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and application. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., P1-2. [Available online at http://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Ling, J., and Zhang C. , 2011: Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals. J. Climate, 24, 825842, doi:10.1175/2010JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., and Zhang C. , 2013: Diabatic heating profiles in recent global reanalyses. J. Climate, 26, 33073325, doi:10.1175/JCLI-D-12-00384.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and Zuidema P. , 1996: Radiative–dynamical consequences of dry tongues in the tropical troposphere. J. Atmos. Sci., 53, 620638, doi:10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2003: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seto, S., and Iguchi T. , 2015: Intercomparison of attenuation correction methods for the GPM dual-frequency precipitation radar. J. Atmos. Oceanic Technol., 32, 915926, doi:10.1175/JTECH-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Seto, S., Iguchi T. , and Oki T. , 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement Mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Takayabu Y. N. , Tao W.-K. , and Johnson D. E. , 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, doi:10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Takayabu Y. N. , Tao W.-K. , and Shie C.-L. , 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 10981124, doi:10.1175/JAM2510.1.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and Nakamura K. , 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., Kummerow C. , Tao W.-K. , and Adler R. F. , 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 1936, doi:10.1007/BF01029783.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., Stephens G. L. , van den Heever S. C. , and Nakajima T. Y. , 2011: Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci., 68, 26552670, doi:10.1175/JAS-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2002: Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophys. Res. Lett., 29, 1584, doi:10.1029/2001GL014113.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., Shige S. , Tao W.-K. , and Hirota N. , 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 20302046, doi:10.1175/2009JCLI3110.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Lang S. , Zeng X. , Shige S. , and Takayabu Y. N. , 2010: Relating convective and stratiform rain to latent heating. J. Climate, 23, 18741893, doi:10.1175/2009JCLI3278.1.

    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., Masunaga H. , and Furuzawa F. A. , 2015: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). SOLA, 11, 1417, doi:10.2151/sola.2015-004.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Fasullo J. T. , and Kiehl J. , 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., Hashimoto A. , and Yoshizaki M. , 2008: Numerical simulations of the formation of melting-layer cloud. Mon. Wea. Rev., 136, 223241, doi:10.1175/2007MWR2012.1.

    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., Zipser E. J. , and Liu C. , 2014: TRMM-observed shallow versus deep convection in the eastern Pacific related to large-scale circulations in reanalysis datasets. J. Climate, 27, 55755592, doi:10.1175/JCLI-D-13-00315.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., Houze R. A. Jr., and Heymsfield A. J. , 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, doi:10.1175/2011JAS3687.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., Meitín R. J. , and LeMone M. A. , 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750, doi:10.1175/1520-0469(1981)038<1725:MMFAWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1605 596 63
PDF Downloads 1066 330 48