Automated Underway Eddy Covariance System for Air–Sea Momentum, Heat, and CO2 Fluxes in the Southern Ocean

Brian J. Butterworth Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Brian J. Butterworth in
Current site
Google Scholar
PubMed
Close
and
Scott D. Miller Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York

Search for other papers by Scott D. Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A ruggedized closed-path eddy covariance (EC) system was designed for unattended direct measurements of air–sea momentum, heat, and CO2 flux, and was deployed on the Research Vessel Icebreaker (RV/IB) Nathaniel B. Palmer (NBP), an Antarctic research and supply vessel. The system operated for nine cruises during 18 months from January 2013 to June 2014 in the Southern Ocean and coastal Antarctica, sampling a wide variety of wind, wave, biological productivity, and ice conditions. The methods are described and the results are shown for two cruises chosen for their latitudinal range, inclusion of both open water and sea ice cover, and relatively large air–water CO2 concentration differences (ΔpCO2). Ship flow distortion was addressed by comparing mean winds, fluxes, and cospectra from an array of 3D anemometers at the NBP bow, comparing measured fluxes with bulk formulas, and implementing and evaluating several recently published data processing techniques. Quality-controlled momentum, heat, and CO2 flux data were obtained for 25% of the periods when NBP was at sea, with most (86%) of the rejected periods due to wind directions relative to the ship >±30° from the bow. In contrast to previous studies, no bias was apparent in measured CO2 fluxes for low |ΔpCO2|. The relationship between momentum flux and wind speed showed a clear dependence on the degree of sea ice cover, a result facilitated by the geographical coverage possible with a ship-based approach. These results indicate that ship-based unattended EC in high latitudes is feasible, and recommendations for deployments of underway systems in such environments are provided.

Corresponding author address: Scott D. Miller, Atmospheric Sciences Research Center, University at Albany, State University of New York, 251 Fuller Road, Albany, NY 12203. E-mail: smiller@albany.edu

Abstract

A ruggedized closed-path eddy covariance (EC) system was designed for unattended direct measurements of air–sea momentum, heat, and CO2 flux, and was deployed on the Research Vessel Icebreaker (RV/IB) Nathaniel B. Palmer (NBP), an Antarctic research and supply vessel. The system operated for nine cruises during 18 months from January 2013 to June 2014 in the Southern Ocean and coastal Antarctica, sampling a wide variety of wind, wave, biological productivity, and ice conditions. The methods are described and the results are shown for two cruises chosen for their latitudinal range, inclusion of both open water and sea ice cover, and relatively large air–water CO2 concentration differences (ΔpCO2). Ship flow distortion was addressed by comparing mean winds, fluxes, and cospectra from an array of 3D anemometers at the NBP bow, comparing measured fluxes with bulk formulas, and implementing and evaluating several recently published data processing techniques. Quality-controlled momentum, heat, and CO2 flux data were obtained for 25% of the periods when NBP was at sea, with most (86%) of the rejected periods due to wind directions relative to the ship >±30° from the bow. In contrast to previous studies, no bias was apparent in measured CO2 fluxes for low |ΔpCO2|. The relationship between momentum flux and wind speed showed a clear dependence on the degree of sea ice cover, a result facilitated by the geographical coverage possible with a ship-based approach. These results indicate that ship-based unattended EC in high latitudes is feasible, and recommendations for deployments of underway systems in such environments are provided.

Corresponding author address: Scott D. Miller, Atmospheric Sciences Research Center, University at Albany, State University of New York, 251 Fuller Road, Albany, NY 12203. E-mail: smiller@albany.edu
Save
  • Andreas, E. L, Jordan R. E. , and Makshtas A. P. , 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Bound.-Layer Meteor., 114, 439460, doi:10.1007/s10546-004-1414-7.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, Horst T. W. , Grachev A. A. , Persson P. O. G. , Fairall C. W. , Guest P. S. , and Jordan R. E. , 2010: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Quart. J. Roy. Meteor. Soc., 136, 927943, doi:10.1002/qj.618.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, Jordan R. E. , Mahrt L. , and Vickers D. , 2013: Estimating the Bowen ratio over the open and ice-covered ocean. J. Geophys. Res. Oceans, 118, 43344345, doi:10.1002/jgrc.20295.

    • Search Google Scholar
    • Export Citation
  • Bell, T. G., De Bruyn W. J. , Miller S. D. , Ward B. , Christensen K. , and Saltzman E. S. , 2013: Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: Evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys., 13, 11 07311 087, doi:10.5194/acp-13-11073-2013.

    • Search Google Scholar
    • Export Citation
  • Bell, T. G., De Bruyn W. J. , Marandino C. A. , Miller S. D. , Law C. S. , Smith M. J. , and Saltzman E. S. , 2015: Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean. Atmos. Chem. Phys., 15, 17831794, doi:10.5194/acp-15-1783-2015.

    • Search Google Scholar
    • Export Citation
  • Blomquist, B. W., Fairall C. W. , Huebert B. J. , Kieber D. J. , and Westby G. R. , 2006: DMS sea-air transfer velocity: Direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model. Geophys. Res. Lett., 33, L07601, doi:10.1029/2006GL025735.

    • Search Google Scholar
    • Export Citation
  • Blomquist, B. W., Huebert B. J. , Fairall C. W. , Bariteau L. , Edson J. B. , Hare J. E. , and McGillis W. R. , 2014: Advances in air–sea CO2 flux measurement by eddy correlation. Bound.-Layer Meteor., 152, 245–276, doi:10.1007/s10546-014-9926-2.

    • Search Google Scholar
    • Export Citation
  • Dunckel, M., Hasse L. , Krügermeyer L. , Schriever D. , and Wucknitz J. , 1974: Turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer at sea during ATEX. Bound.-Layer Meteor., 6, 81106, doi:10.1007/BF00232478.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., Hinton A. A. , Prada K. E. , Hare J. E. , and Fairall C. W. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2011: Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: Wind speed dependency. J. Geophys. Res., 116, C00F10, doi:10.1029/2011JC007022.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Else, B. G. T., Papakyriakou T. N. , Galley R. J. , Drennan W. M. , Miller L. A. , and Thomas H. , 2011: Wintertime CO2 fluxes in an Arctic polynya using eddy covariance: Evidence for enhanced air-sea gas transfer during ice formation. J. Geophys. Res., 116, C00G03, doi:10.1029/2010JC006760.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2011: Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J. Geophys. Res., 116, C00F09, doi:10.1029/2010JC006884.

    • Search Google Scholar
    • Export Citation
  • Fujitani, T., 1985: Method of turbulent flux measurement on a ship by using a stable platform system. Pap. Meteor. Geophys., 36, 157170, doi:10.2467/mripapers.36.157.

    • Search Google Scholar
    • Export Citation
  • Goulden, M. L., Munger J. W. , Fan S. M. , Daube B. C. , and Wofsy S. C. , 1996: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol., 2, 169182, doi:10.1111/j.1365-2486.1996.tb00070.x.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., Andreas E. L , Fairall C. W. , Guest P. S. , and Persson P. O. G. , 2007: SHEBA flux–profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315333, doi:10.1007/s10546-007-9177-6.

    • Search Google Scholar
    • Export Citation
  • Hall, R. J., Hughes N. , and Wadhams P. , 2002: A systematic method of obtaining ice concentration measurements from ship-based observations. Cold Reg. Sci. Technol., 34, 97102, doi:10.1016/S0165-232X(01)00057-X.

    • Search Google Scholar
    • Export Citation
  • Ibrom, A., Dellwik E. , Flyvbjerg H. , Jensen N. O. , and Pilegaard K. , 2007: Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems. Agric. For. Meteor., 147, 140156, doi:10.1016/j.agrformet.2007.07.007.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., Wyngaard J. C. , Izumi Y. , and Coté O. R. , 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Search Google Scholar
    • Export Citation
  • Kohsiek, W., 2000: Water vapor cross-sensitivity of open path H2O/CO2 sensors. J. Atmos. Oceanic Technol., 17, 299311, doi:10.1175/1520-0426(2000)017<0299:WVCSOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landwehr, S., Miller S. D. , Smith M. J. , Saltzman E. S. , and Ward B. , 2014: Analysis of the PKT correction for direct CO2 flux measurements over the ocean. Atmos. Chem. Phys., 14, 33613372, doi:10.5194/acp-14-3361-2014.

    • Search Google Scholar
    • Export Citation
  • Landwehr, S., O’Sullivan N. , and Ward B. , 2015: Direct flux measurements from mobile platforms at sea: Motion and airflow distortion corrections revisited. J. Atmos. Oceanic Technol., 32, 1163–1178, doi:10.1175/JTECH-D-14-00137.1.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 1735–1738, doi:10.1126/science.1136188.

    • Search Google Scholar
    • Export Citation
  • Loose, B., McGillis W. R. , Perovich D. , Zappa C. J. , and Schlosser P. , 2014: A parameter model of gas exchange for the seasonal sea ice zone. Ocean Sci., 10, 1728, doi:10.5194/os-10-17-2014.

    • Search Google Scholar
    • Export Citation
  • Marandino, C. A., De Bruyn W. J. , Miller S. D. , and Saltzman E. S. , 2007: Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific Ocean. J. Geophys. Res., 112, D03301, doi:10.1029/2006JD007293.

    • Search Google Scholar
    • Export Citation
  • McGillis, W. R., Edson J. B. , Hare J. E. , and Fairall C. W. , 2001: Direct covariance air-sea CO2 fluxes. J. Geophys. Res., 106, 16 72916 745, doi:10.1029/2000JC000506.

    • Search Google Scholar
    • Export Citation
  • McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Bound.-Layer Meteor., 43, 231245, doi:10.1007/BF00128405.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., Goulden M. L. , Menton M. C. , da Rocha H. R. , de Freitas H. C. , Figueira A. M. S. , and de Sousa C. A. D. , 2004: Biometric and micrometeorological measurements of tropical forest carbon balance. Ecol. Appl., 14, 114126, doi:10.1890/02-6005.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., Hristov T. S. , Edson J. B. , and Friehe C. A. , 2008: Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. J. Atmos. Oceanic Technol., 25, 16831694, doi:10.1175/2008JTECHO547.1.

    • Search Google Scholar
    • Export Citation
  • Miller, S. D., Marandino C. A. , and Saltzman E. S. , 2010: Ship-based measurement of air-sea CO2 exchange by eddy covariance. J. Geophys. Res., 115, D02304, doi:10.1029/2009JD012193.

    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., and Fujitani T. , 1974: Direct measurement of turbulent fluxes on a cruising ship. Bound.-Layer Meteor., 6, 203217, doi:10.1007/BF00232485.

    • Search Google Scholar
    • Export Citation
  • Moat, B. I., and Yelland M. J. , 2008: Going with the flow: State of the art marine meteorological measurements on the new NERC research vessel. Weather, 63, 158159, doi:10.1002/wea.184.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, N., Landwehr S. , and Ward B. , 2013: Mapping flow distortion on oceanographic platforms using computational fluid dynamics. Ocean Sci., 9, 855866, doi:10.5194/os-9-855-2013.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, N., Landwehr S. , and Ward B. , 2015: Air-flow distortion and wave interactions on research vessels: An experimental and numerical comparison. Methods Oceanogr., 12, 117, doi:10.1016/j.mio.2015.03.001.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Popinet, S., Smith M. J. , and Stevens C. , 2004: Experimental and numerical study of the turbulence characteristics of airflow around a research vessel. J. Atmos. Oceanic Technol., 21, 15751589, doi:10.1175/1520-0426(2004)021<1575:EANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prytherch, J., Yelland M. J. , Pascal R. W. , Moat B. I. , Skjelvan I. , and Neill C. C. , 2010: Direct measurements of the CO2 flux over the ocean: Development of a novel method. Geophys. Res. Lett., 37, L03607, doi:10.1029/2009GL041482.

    • Search Google Scholar
    • Export Citation
  • Prytherch, J., Yelland M. J. , Brooks I. M. , Tupman D. J. , Pascal R. W. , Moat B. I. , and Norris S. J. , 2015: Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships. Atmos. Chem. Phys., 15, 10 61910 629, doi:10.5194/acp-15-10619-2015.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and Coauthors, 2010: Southern Ocean Observing System (SOOS): Rationale and strategy for sustained observations of the Southern Ocean. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.74.

    • Search Google Scholar
    • Export Citation
  • Schotanus, P., Nieuwstadt F. T. M. , and de Bruin H. A. R. , 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteor., 26, 8193, doi:10.1007/BF00164332.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709726, doi:10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Sweeney C. , Hales B. , Chipman D. W. , Newberger T. , Goddard J. , Iannuzzi R. , and Sutherland S. C. , 2012: The changing carbon cycle in the Southern Ocean. Oceanography, 25 (3), 2637, doi:10.5670/oceanog.2012.71.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Sweeney C. , and Sutherland S. C. , 2014: Underway pCO2 measurements in surface waters and the atmosphere during the R/V Nathaniel B. Palmer 2013 expeditions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, accessed 11 March 2016, doi:10.3334/CDIAC/OTG.VOS_PALMER_2013.

  • Takahashi, T., Sweeney C. , and Sutherland S. C. , 2016: Underway pCO2 measurements in surface waters and the atmosphere during the R/V Nathaniel B. Palmer 2014 expeditions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, accessed 11 March 2016, doi:10.3334/CDIAC/OTG.VOS_PALMER_2014.

  • Wanninkhof, R., Asher W. E. , Ho D. T. , Sweeney C. , and McGillis W. R. , 2009: Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci., 1, 213244, doi:10.1146/annurev.marine.010908.163742.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., Oncley S. P. , and Stage S. A. , 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Search Google Scholar
    • Export Citation
  • Yelland, M. J., Moat B. I. , Pascal R. W. , and Berry D. I. , 2002: CFD model estimates of the airflow distortion over research ships and the impact on momentum flux measurements. J. Atmos. Oceanic Technol., 19, 14771499, doi:10.1175/1520-0426(2002)019<1477:CMEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yelland, M. J., Pascal R. W. , Taylor P. K. , and Moat B. I. , 2009: AutoFlux: An autonomous system for the direct measurement of the air–sea fluxes of CO2, heat and momentum. J. Oper. Oceanogr., 2, 1523, doi:10.1080/1755876X.2009.11020105.

    • Search Google Scholar
    • Export Citation
  • Zemmelink, H. J., Delille B. , Tison J. L. , Hintsa E. J. , Houghton L. , and Dacey J. W. H. , 2006: CO2 deposition over the multi-year ice of the western Weddell Sea. Geophys. Res. Lett., 33, L13606, doi:10.1029/2006GL026320.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1223 663 149
PDF Downloads 569 99 16