Rates of Dissipation of Turbulent Kinetic Energy in a High Reynolds Number Tidal Channel

Justine M. McMillan Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Justine M. McMillan in
Current site
Google Scholar
PubMed
Close
,
Alex E. Hay Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Alex E. Hay in
Current site
Google Scholar
PubMed
Close
,
Rolf G. Lueck Rockland Scientific Inc., Victoria, British Columbia, Canada

Search for other papers by Rolf G. Lueck in
Current site
Google Scholar
PubMed
Close
, and
Fabian Wolk Rockland Scientific Inc., Victoria, British Columbia, Canada

Search for other papers by Fabian Wolk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability to estimate the rate of dissipation (ε) of turbulent kinetic energy at middepth in a high-speed tidal channel using broadband acoustic Doppler current profilers (ADCPs) is assessed by making comparisons to direct measurements of ε obtained using shear probes mounted on a streamlined underwater buoy. The investigation was carried out in Grand Passage, Nova Scotia, Canada, where the depth-averaged flow speed reached 2 m s−1 and the Reynolds number was 8 × 107. The speed bin–averaged dissipation rates estimated from the ADCP data agree with the shear probe data to within a factor of 2. Both the ADCP and the shear probe measurements indicate a linear dependence of ε on the cube of the flow speed during flood and much lower dissipation rates during ebb. The ebb–flood asymmetry and the small-scale intermittency in ε are also apparent in the lognormal distributions of the shear probe data. Possible sources of bias and error in the ε estimates are investigated, and the most likely causes of the discrepancy between the ADCP and shear probe estimates are the cross-channel separation of the instruments and the high degree of spatial variability that exists in the channel.

Corresponding author address: Justine McMillan, Department of Oceanography, Dalhousie University, P.O. Box 15000, Halifax NS B3H 4R2, Canada. E-mail: justine.mcmillan@dal.ca

Abstract

The ability to estimate the rate of dissipation (ε) of turbulent kinetic energy at middepth in a high-speed tidal channel using broadband acoustic Doppler current profilers (ADCPs) is assessed by making comparisons to direct measurements of ε obtained using shear probes mounted on a streamlined underwater buoy. The investigation was carried out in Grand Passage, Nova Scotia, Canada, where the depth-averaged flow speed reached 2 m s−1 and the Reynolds number was 8 × 107. The speed bin–averaged dissipation rates estimated from the ADCP data agree with the shear probe data to within a factor of 2. Both the ADCP and the shear probe measurements indicate a linear dependence of ε on the cube of the flow speed during flood and much lower dissipation rates during ebb. The ebb–flood asymmetry and the small-scale intermittency in ε are also apparent in the lognormal distributions of the shear probe data. Possible sources of bias and error in the ε estimates are investigated, and the most likely causes of the discrepancy between the ADCP and shear probe estimates are the cross-channel separation of the instruments and the high degree of spatial variability that exists in the channel.

Corresponding author address: Justine McMillan, Department of Oceanography, Dalhousie University, P.O. Box 15000, Halifax NS B3H 4R2, Canada. E-mail: justine.mcmillan@dal.ca
Save
  • Fer, I., and Paskyabi M. B. , 2014: Autonomous ocean turbulence measurements using shear probes on a moored instrument. J. Atmos. Oceanic Technol., 31, 474490, doi:10.1175/JTECH-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, L., Levine E. R. , and Lueck R. G. , 2006: On measuring the terms of the turbulent kinetic energy budget from an AUV. J. Atmos. Oceanic Technol., 23, 977990, doi:10.1175/JTECH1889.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, R. L., 1996: Acoustic Doppler current profiler: Principles of operation; A practical primer. RD Instruments Tech. Rep. P/N 951-6069-00, 52 pp.

  • Grant, H. L., Stewart R. W. , and Moilliet A. , 1962: Turbulence spectra from a tidal channel. J. Fluid Mech., 12, 241268, doi:10.1017/S002211206200018X.

    • Search Google Scholar
    • Export Citation
  • Hay, A. E., McMillan J. M. , Cheel R. , and Schillinger D. J. , 2013: Turbulence and drag in a high Reynolds number tidal passage targetted for in-stream tidal power. Proc. Oceans 2013, San Diego, CA, IEEE, 10 pp. [Available online at http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6741193&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6741193.]

  • Hinze, J. O., 1959: Turbulence. McGraw-Hill, 586 pp.

  • Huntley, D. A., 1988: A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer measurements. J. Phys. Oceanogr., 18, 339346, doi:10.1175/1520-0485(1988)018<0339:AMIDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lohrmann, A., Hackett B. , and Røed L. P. , 1990: High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmos. Oceanic Technol., 7, 1937, doi:10.1175/1520-0426(1990)007<0019:HRMOTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., and Lueck R. G. , 1999: Using a broadband ADCP in a tidal channel. Part II: Turbulence. J. Atmos. Oceanic Technol., 16, 15681579, doi:10.1175/1520-0426(1999)016<1568:UABAIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., Lueck R. G. , and Huang D. , 2000: Turbulence characteristics in a tidal channel. J. Phys. Oceanogr., 30, 855867, doi:10.1175/1520-0485(2000)030<0855:TCIATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lucas, N. S., Simpson J. H. , Rippeth T. P. , and Old C. P. , 2014: Measuring turbulent dissipation using a tethered ADCP. J. Atmos. Oceanic Technol., 31, 18261837, doi:10.1175/JTECH-D-13-00198.1.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., 2015: Calculating the rate of dissipation of turbulent kinetic energy. RSI Tech. Note TN-028, 18 pp. [Available online at http://rocklandscientific.com/?wpdmdl=1034.]

  • Lueck, R. G., Wolk F. , and Black K. , 2013: Measuring tidal channel turbulence with a vertical microstructure profiler (VMP). RSI Tech. Note TN-026, 35 pp. [Available online at http://rocklandscientific.com/?wpdmdl=1032.]

  • Lueck, R. G., Wolk F. , Hancyck J. , and Black K. , 2015: Hub-height time series measurements of velocity and dissipation of turbulence kinetic energy in a tidal channel. 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement Workshop (CWTM), IEEE, 1–5, doi:10.1109/CWTM.2015.7098143.

  • Macoun, P., and Lueck R. G. , 2004: Modeling the spatial response of the airfoil shear probe using different sized probes. J. Atmos. Oceanic Technol., 21, 284297, doi:10.1175/1520-0426(2004)021<0284:MTSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malinka, C. E., 2013: Acoustic detection ranges and baseline ambient noise measurements for a marine mammal monitoring system at a proposed in-stream tidal turbine site: Grand Passage, Nova Scotia. B.S. thesis, Dept. of Biology, Dalhousie University, 73 pp.

  • McCaffrey, K., Fox-Kemper B. , Hamlington P. E. , and Thomson J. , 2015: Characterization of turbulence anisotropy, coherence, and intermittency at a prospective tidal energy site: Observational data analysis. Renewable Energy, 76, 441453, doi:10.1016/j.renene.2014.11.063.

    • Search Google Scholar
    • Export Citation
  • McMillan, J. M., Hay A. E. , Karsten R. H. , Trowse G. , Schillinger D. , and O’Flaherty-Sproul M. , 2013: Comprehensive tidal energy resource assessment in the lower Bay of Fundy, Canada. Proc. 10th European Wave and Tidal Energy Conf. 2013, Aalborg, Denmark, Aalborg University, 10 pp. [Available online at http://www.ewtec.org/proceedings/.]

  • McMillan, J. M., Hay A. E. , Lueck R. G. , and Wolk F. , 2015: An assessment of the turbulence at a tidal energy site using a VMP and an ADCP. Proc. 11th European Wave and Tidal Energy Conf., Nantes, France, Ecole Centrale de Nantes, 8B4-4. [Available online at http://www.ewtec.org/proceedings/.]

  • Nasmyth, P. W., 1970: Oceanic turbulence. Ph.D. thesis, University of British Columbia, 69 pp., doi:10.14288/1.0084817.

  • Nuttall, A. H., 1971: Spectral estimation by means of overlapped fast Fourier transform processing of windowed data. NUSC Tech. Rep. 4169, 48 pp.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osalusi, E., Side J. , and Harris R. , 2009: Reynolds stress and turbulence estimates in bottom boundary layer of Fall of Warness. Int. Commun. Heat Mass Transfer, 36, 412421, doi:10.1016/j.icheatmasstransfer.2009.02.004.

    • Search Google Scholar
    • Export Citation
  • Paparoditis, E., 2002: Frequency domain bootstrap for time series. Empirical Process Techniques for Dependent Data, H. Dehling, T. Mikosch, and M. Sørensen, Eds., Birkhäuser, 365–381, doi:10.1007/978-1-4612-0099-4_14.

  • Plueddemann, A. J., 1987: Observation of the upper ocean using a multi-beam Doppler sonar. Ph.D. thesis, Scripps Institution of Oceanography, 145 pp.

  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 802 pp.

  • Rippeth, T. P., Williams E. , and Simpson J. H. , 2002: Reynolds stress and turbulent energy production in a tidal channel. J. Phys. Oceanogr., 32, 12421251, doi:10.1175/1520-0485(2002)032<1242:RSATEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., Simpson J. H. , Williams E. , and Inall M. E. , 2003: Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. J. Phys. Oceanogr., 33, 18891901, doi:10.1175/1520-0485(2003)033<1889:MOTROP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruddick, B., Anis A. , and Thompson K. , 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol., 17, 15411555, doi:10.1175/1520-0426(2000)017<1541:MLSFTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1995: On the universality of the Kolmogorov constant. Phys. Fluids, 7, 27782784, doi:10.1063/1.868656.

  • Stacey, M. T., Monismith S. G. , and Burau J. R. , 1999: Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res., 104, 10 93310 949, doi:10.1029/1998JC900095.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. R. J., Sellar B. G. , Harding S. H. , and Bryden I. , 2013: Initial flow characterisation utilising turbine and seabed installed acoustic sensor arrays. Proc. 10th European Wave and Tidal Energy Conf. 2013, Aalborg, Denmark, Aalborg University, 8 pp. [Available online at http://www.ewtec.org/proceedings/.]

  • Thomson, J., Polagye B. , Durgesh V. , and Richmond M. C. , 2012: Measurements of turbulence at two tidal energy sites in Puget Sound, WA. IEEE J. Oceanic Eng., 37, 363374, doi:10.1109/JOE.2012.2191656.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., Kilcher L. F. , and Harding S. , 2014: Multi-scale coherent turbulence at tidal energy sites. Proc. 5th Int. Conf. on Ocean Energy, Halifax, NS, Canada, International ICOE Committee, 6 pp. [Available online at https://www.icoe-conference.com/publication/multi-scale-coherent-turbulence-at-tidal-energy-sites/.]

  • Wiles, P. J., Rippeth T. P. , Simpson J. H. , and Hendricks P. J. , 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett., 33, L21608, doi:10.1029/2006GL027050.

  • Wolk, F., Yamazaki H. , Seuront L. , and Lueck R. G. , 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19, 780793, doi:10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yaglom, A. M., 1979: Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu. Rev. Fluid Mech., 11, 505540, doi:10.1146/annurev.fl.11.010179.002445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 749 126 10
PDF Downloads 583 94 6