Improving Unmanned Aerial Vehicle–Based Acoustic Atmospheric Tomography by Varying the Engine Firing Rate of the Aircraft

Anthony Finn Defence and Systems Institute, University of South Australia, Mawson Lakes, South Australia, Australia

Search for other papers by Anthony Finn in
Current site
Google Scholar
PubMed
Close
and
Kevin Rogers Defence and Systems Institute, University of South Australia, Mawson Lakes, South Australia, Australia

Search for other papers by Kevin Rogers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

If the acoustic signature of an unmanned aerial vehicle (UAV) is observed as it overflies an array of ground microphones, then the projected and observed Doppler shifts in frequency of the narrowband tones generated by its engine may be compared and converted into effective sound speed values. This allows 2D and 3D spatially varying atmospheric temperature and wind velocity fields to be estimated using tomography. Errors in estimating sound speed values are inversely proportional to the rate of change in the narrowband tones received on the ground. As this rate of change typically approaches zero at least twice per microphone during the UAV’s overflight, errors in the time of flight estimates are typically too large to deliver useful precision to the tomographically derived temperature and wind fields. However, these errors may be reduced by one or two orders of magnitude by continuously varying the engine throttle rate, thereby making the tomographic technique potentially feasible. This is demonstrated through reconstruction of realistic simulated conditions for a weakly sheared daytime convective atmospheric boundary layer.

Denotes Open Access content.

Corresponding author address: Anthony Finn, Defence and Systems Institute, University of South Australia, Building W, Corner of Mawson Lakes Blvd. and University Blvd., Mawson Lakes SA 5095, Australia. E-mail: anthony.finn@unisa.edu.au; kevin.rogers@mymail.unisa.edu.au

Abstract

If the acoustic signature of an unmanned aerial vehicle (UAV) is observed as it overflies an array of ground microphones, then the projected and observed Doppler shifts in frequency of the narrowband tones generated by its engine may be compared and converted into effective sound speed values. This allows 2D and 3D spatially varying atmospheric temperature and wind velocity fields to be estimated using tomography. Errors in estimating sound speed values are inversely proportional to the rate of change in the narrowband tones received on the ground. As this rate of change typically approaches zero at least twice per microphone during the UAV’s overflight, errors in the time of flight estimates are typically too large to deliver useful precision to the tomographically derived temperature and wind fields. However, these errors may be reduced by one or two orders of magnitude by continuously varying the engine throttle rate, thereby making the tomographic technique potentially feasible. This is demonstrated through reconstruction of realistic simulated conditions for a weakly sheared daytime convective atmospheric boundary layer.

Denotes Open Access content.

Corresponding author address: Anthony Finn, Defence and Systems Institute, University of South Australia, Building W, Corner of Mawson Lakes Blvd. and University Blvd., Mawson Lakes SA 5095, Australia. E-mail: anthony.finn@unisa.edu.au; kevin.rogers@mymail.unisa.edu.au
Save
  • Arnold, K., Ziemann A. , and Raabe A. , 1999: Acoustic tomography inside the atmospheric boundary layer. Phys. Chem. Earth, 24B, 133137, doi:10.1016/S1464-1909(98)00024-0.

    • Search Google Scholar
    • Export Citation
  • Ash, J. N., and Moses R. L. , 2005: Acoustic time delay estimation and sensor network self-localization: Experimental results. J. Acoust. Soc. Amer., 118, 841850, doi:10.1121/1.1953307.

    • Search Google Scholar
    • Export Citation
  • Aster, R., and Thurber B. B. C. , 2013: Parameter Estimation and Inverse Problems. 2nd ed. Elsevier, 377 pp.

  • Barth, M., and Raabe A. , 2011: Acoustic tomographic imaging of temperature and flow fields in air. J. Meas. Sci. Technol., 22, 035 102, doi:10.1088/0957-0233/22/3/035102.

    • Search Google Scholar
    • Export Citation
  • Brown, R. W., Cheng Y.-C. N. , Haacke E. M. , Thompson M. R. , and Venkatesan R. , 2014: Magnetic Resonance Imaging: Physical Principles and Sequence Design. 2nd ed. John Wiley & Sons, 1008 pp.

  • Ferguson, B. G., and Quinn B. G. , 1994: Application of the short-time Fourier transform and the Wigner–Ville distribution to the acoustic localization of aircraft. J. Acoust. Soc. Amer., 96, 821827, doi:10.1121/1.410320.

    • Search Google Scholar
    • Export Citation
  • Ferguson, B. G., and Lo K. W. , 2000: Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods. J. Acoust. Soc. Amer., 108, 17631771, doi:10.1121/1.1286150.

    • Search Google Scholar
    • Export Citation
  • Finn, A., and Franklin S. , 2011a Acoustic sense & avoid for UAV’s. 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks, and Information Processing, IEEE, 586–589, doi:10.1109/ISSNIP.2011.6146555.

    • Search Google Scholar
    • Export Citation
  • Finn, A., and Franklin S. , 2011b: UAV-based atmospheric tomography. Australian Acoustical Society Conference 2011: Acoustics 2011; Breaking New Ground, Australian Acoustical Society, 636–640.

    • Search Google Scholar
    • Export Citation
  • Finn, A., and Rogers K. , 2015: The feasibility of unmanned aerial vehicle-based acoustic atmospheric tomography. J. Acoust. Soc. Amer., 138, 874, doi:10.1121/1.4926900.

    • Search Google Scholar
    • Export Citation
  • Finn, A., Rogers K. , Meade J. , and Franklin S. , 2014: Acoustic atmospheric tomography using multiple unmanned aerial vehicles. Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII, A. Comeron et al. Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9242), 92420Q92428, doi:10.1117/12.2073249.

  • Franklin, S., and Finn A. , 2012: Acoustic sense and avoid for UAVs—Trials results. Sir Ross and Sir Keith Smith Fund Rep. DA-AS-085-D0070, 28 pp.

  • Franklin, S., and Finn A. , 2014: Acoustic sense & avoid (phase II): Real world validation of performance envelope. Sir Ross and Sir Keith Research Fund Rep. DASI-AF-2014-TR-6, 34 pp.

  • Jovanović, I., 2008: Inverse problems in acoustic tomography: Theory and applications. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 125 pp.

  • Jovanović, I., Sbaiz L. , and Vetterli M. , 2009: Acoustic tomography for scalar and vector fields: Theory and application to temperature and wind estimation. J. Atmos. Oceanic Technol., 26, 14751492, doi:10.1175/2009JTECHA1266.1.

    • Search Google Scholar
    • Export Citation
  • Kak, C., and Slaney M. , 2001: Principles of Computerized Tomographic Imaging. Classics in Applied Mathematics, Vol. 33, SIAM, 323 pp., doi:10.1137/1.9780898719277.

  • Kolouri, S., and Azimi-Sadjadi M. R. , 2012: Acoustic tomography of the atmosphere using unscented Kalman filter. Proceedings of the 20th European Signal Processing Conference (EUSIPCO), IEEE, 25312535.

  • Kozick, R. J., and Sadler B. M. , 2000: Algorithms for localization and tracking of acoustic sources with widely separated sensors. DTIC Doc. ADA392173, 19 pp.

  • Lo, K. W., and Ferguson B. G. , 2004: Tactical unmanned aerial vehicle localization using ground-based acoustic sensors. Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, IEEE, 475480, doi:10.1109/ISSNIP.2004.1417507.

  • Ostashev, V., 1997: Acoustics in Moving Inhomogeneous Media. Thomson Science & Professional, 259 pp.

  • Ostashev, V., Voronovich A. , and Wilson D. K. , 2000: Acoustic tomography of the atmosphere. IGARSS 2000: IEEE 2000 International Geoscience and Remote Sensing Symposium; Taking the Pulse of the Planet, Vol. 3, IEEE, 1186–1188, doi:10.1109/IGARSS.2000.858062.

  • Ostashev, V., Scanlon M. V. , Wilson D. K. , and Vecherin S. N. , 2008a: Source localization from an elevated acoustic sensor array in a refractive atmosphere. J. Acoust. Soc. Amer., 124, 34133420, doi:10.1121/1.3003085.

    • Search Google Scholar
    • Export Citation
  • Ostashev, V., Vecherin S. N. , Wilson D. K. , Ziemann A. , and Goedecke G. H. , 2008b: Recent progress in acoustic tomography of the atmosphere. IOP Conf. Series: Earth Environ. Sci., 1, 012008, doi:10.1088/1755-1307/1/1/012008.

  • Parkinson, B. W., and Spilker J. J. Jr., Eds., 1996: Global Positioning System: Theory and Applications; Volume II. Progress in Astronautics and Aeronautics, Vol. 164, American Institute of Aeronautics and Astronautics, 632 pp., doi:10.2514/4.866395.

  • Rogers, K. J., and Finn A. , 2013a: Frequency estimation for 3D atmospheric tomography using unmanned aerial vehicles. Proceedings of the 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, IEEE, 390395, doi:10.1109/ISSNIP.2013.6529822.

  • Rogers, K. J., and Finn A. , 2013b: 3D atmospheric tomography using UAVs. Annual Conference of the Australian Acoustical Society 2013, Australian Acoustical Society, 52–56.

  • Rogers, K. J., and Finn A. , 2013c: Three-dimensional UAV-based atmospheric tomography. J. Atmos. Oceanic Technol., 30, 336344, doi:10.1175/JTECH-D-12-00036.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, K. J., and Finn A. , 2014: 3D acoustic atmospheric tomography. Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII, A. Comeron et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9242), 92420R92429R, doi:10.1117/12.2073247.

  • Snieder, R., and Trampert J. , 1999: Inverse problems in geohysics. Wavefield Inversion, A. Wirgin, Ed., International Centre for Mechanical Sciences, Vol. 398, Springer, 119–190, doi:10.1007/978-3-7091-2486-4_3.

    • Search Google Scholar
    • Export Citation
  • Spiesberger, J. L., and Fristrup K. M. , 1990: Passive localization of calling animals and sensing of their acoustic environment using acoustic tomography. Amer. Nat., 135, 107153, doi:10.1086/285035.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and Patton E. G. , 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. Other Titles in Applied Mathematics, SIAM, 358 pp., doi:10.1137/1.9780898717921.

  • Vecherin, S. N., Ostashev V. E. , Goedecke G. H. , Wilson D. K. , and Voronovich A. G. , 2006: Time-dependent stochastic inversion in acoustic travel-time tomography of the atmosphere. J. Acoust. Soc. Amer., 119, 25792588, doi:10.1121/1.2180535.

    • Search Google Scholar
    • Export Citation
  • Vecherin, S. N., Ostashev V. E. , Ziemann A. , Wilson D. K. , Arnold K. , and Barth M. , 2007: Tomographic reconstruction of atmospheric turbulence with the use of time-dependent stochastic inversion. J. Acoust. Soc. Amer., 122, 14161425, doi:10.1121/1.2756798.

    • Search Google Scholar
    • Export Citation
  • Vecherin, S. N., Ostashev V. E. , and Wilson D. K. , 2008a: Three-dimensional acoustic travel-time tomography of the atmosphere. Acta Acust. Acust., 94, 349358, doi:10.3813/AAA.918042.

    • Search Google Scholar
    • Export Citation
  • Vecherin, S. N., Ostashev V. E. , Wilson D. K. , and Ziemann A. , 2008b: Time-dependent stochastic inversion in acoustic tomography of the atmosphere with reciprocal sound transmission. J. Meas. Sci. Technol., 19, 125501, doi:10.1088/0957-0233/19/12/125501.

    • Search Google Scholar
    • Export Citation
  • Wiens, T., and Behrens P. , 2009: Turbulent flow sensing using acoustic tomography. Proc. Inter-Noise 2009: Innovations in Practical Noise Control, Ottawa, ON, Canada, Institute of Noise Control Engineering of the USA, 9 pp. [Available online at http://www.nutaksas.com/papers/in09_067.pdf.]

  • Wilson, D. K., and Thomson D. W. , 1994: Acoustic tomographic monitoring of the atmospheric surface layer. J. Atmos. Oceanic Technol., 11, 751769, doi:10.1175/1520-0426(1994)011<0751:ATMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. K., Ziemann A. , Ostashev V. E. , and Voronovich A. , 2001: An overview of acoustic travel-time tomography in the atmosphere and its potential applications. Acta Acust. Acust., 87, 721730.

    • Search Google Scholar
    • Export Citation
  • Ziemann, A., Arnold K. , and Raabe A. , 1999: Acoustic travel time tomography—A method for remote sensing of the atmospheric surface layer. Meteor. Atmos. Phys., 71, 4351, doi:10.1007/s007030050042.

    • Search Google Scholar
    • Export Citation
  • Ziemann, A., Arnold K. , and Raabe A. , 2002: Acoustic tomography as a remote sensing method to investigate the near-surface atmospheric boundary layer in comparison with in situ measurements. J. Atmos. Oceanic Technol., 19, 12081215, doi:10.1175/1520-0426(2002)019<1208:ATAARS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1057 694 199
PDF Downloads 258 61 7