• Alvera-Azcárate, A., , Barth A. , , Rixen M. , , and Beckers J. M. , 2005: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic Sea surface temperature. Ocean Modell., 9, 325346, doi:10.1016/j.ocemod.2004.08.001.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 1971: Theory of HF and VHF propagation across the rough sea: 1. The effective surface impedance for a slightly rough highly conducting medium at grazing incidence. Radio Sci., 6, 517526, doi:10.1029/RS006i005p00517.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., 2008: 30 years of CMTC and CODAR. CMTC 2008: IEEE/OES 9th Working Conference on Current Measurement Technology, IEEE, 131–136, doi:10.1109/CCM.2008.4480856.

  • Barrick, D. E., , and Lipa B. J. , 1997: Evolution of bearing determination in HF current mapping radars. Oceanography, 10, 7275, doi:10.5670/oceanog.1997.27.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., , Evens M. W. , , and Weber B. L. , 1977: Ocean surface currents mapped by radar. Science, 198, 138144, doi:10.1126/science.198.4313.138.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., , Pierce S. D. , , and Cowles T. J. , 2005: Mesoscale structure and its seasonal evolution in the northern California Current System. Deep-Sea Res. II, 52, 528, doi:10.1016/j.dsr2.2004.09.026.

    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., , and Boicourt W. C. , 1981: On estuarine and continental-shelf circulation in the Middle Atlantic Bight. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT, 198–233.

  • Beckers, J. M., , and Rixen M. , 2003: EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Oceanic Technol., 20, 18391856, doi:10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Craven, P., , and Wahba G. , 1978: Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math., 31, 377403, doi:10.1007/BF01404567.

    • Search Google Scholar
    • Export Citation
  • Crombie, D. D., 1955: Doppler spectrum of sea echo at 13.56 Mc./s. Nature, 175, 681682, doi:10.1038/175681a0.

  • Davis, R. E., 1985: Objective mapping by least squares fitting. J. Geophys. Res., 90, 47734778, doi:10.1029/JC090iC03p04773.

  • Dzwonkowski, B., 2009: Surface current analysis of shelf water in the central Mid-Atlantic Bight. Ph.D. thesis, University of Delaware, 178 pp.

  • Dzwonkowski, B., , Kohut J. T. , , and Yan X.-H. , 2009: Seasonal differences in wind-driven across-shelf forcing and response relationships in the shelf surface layer of the central Mid-Atlantic Bight. J. Geophys. Res., 114, C08018, doi:10.1029/2008JC004888.

    • Search Google Scholar
    • Export Citation
  • Garcia, D., 2010: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal., 54, 11671178, doi:10.1016/j.csda.2009.09.020.

    • Search Google Scholar
    • Export Citation
  • Garcia, D., 2011: A fast all-in-one method for automated post-processing of PIV data. Exp. Fluids, 50, 12471259, doi:10.1007/s00348-010-0985-y.

    • Search Google Scholar
    • Export Citation
  • Gong, D., , Kohut J. T. , , and Glenn S. M. , 2010: Seasonal climatology of wind-driven circulation on the New Jersey Shelf. J. Geophys. Res., 115, C04006, doi:10.1029/2009JC005520.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., , and Visbeck M. , 1998: Upwelling and convergence in the Middle Atlantic Bight Shelfbreak Front. Geophys. Res. Lett., 25, 27652768, doi:10.1029/98GL02105.

    • Search Google Scholar
    • Export Citation
  • Kaplan, D. M., , and Lekien F. , 2007: Spatial interpolation and filtering of surface current data based on open-boundary modal analysis. J. Geophys. Res., 112, C12007, doi:10.1029/2006JC003984.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., , Terrill E. , , and Cornuelle B. , 2007: Objectively mapping HF radar-derived surface current data using measured and idealized data covariance matrices. J. Geophys. Res., 112, C06021, doi:10.1029/2006JC003756.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., , Terrill E. , , and Cornuelle B. , 2008: Mapping surface currents from HF radar radial velocity measurements using optimal interpolation. J. Geophys. Res., 113, C10023, doi:10.1029/2007JC004244.

    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., , Glenn S. M. , , and Chant R. J. , 2004: Seasonal current variability on the New Jersey inner shelf. J. Geophys. Res., 109, C07S07, doi:10.1029/2003JC001963.

    • Search Google Scholar
    • Export Citation
  • Kohut, J. T., , Roarty H. J. , , and Glenn S. M. , 2006: Characterizing observed environmental variability with HF Doppler radar surface current mappers and acoustic Doppler current profilers: Environmental variability in the coastal ocean. IEEE J. Oceanic Eng., 31, 876884, doi:10.1109/JOE.2006.886095.

    • Search Google Scholar
    • Export Citation
  • Kohut, J., , Roarty H. , , Randall-Goodwin E. , , Glenn S. , , and Lichtenwalner C. , 2012: Evaluation of two algorithms for a network of coastal HF radars in the Mid-Atlantic Bight. Ocean Dyn., 62, 953968, doi:10.1007/s10236-012-0533-9.

    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., , and Barrick D. E. , 1983: Least-squares methods for the extraction of surface currents from CODAR cross-loop data: Application at ARSLOE. IEEE J Oceanic Eng., OE-8, 226253, doi:10.1109/JOE.1983.1145578.

    • Search Google Scholar
    • Export Citation
  • Lipphardt, B. L., , Kirwan A. D. , , Grosch C. E. , , Lewis J. K. , , and Paduan J. D. Jr., 2000: Blending HF radar and model velocities in Monterey Bay through normal mode analysis. J. Geophys. Res., 105, 34253450, doi:10.1029/1999JC900295.

    • Search Google Scholar
    • Export Citation
  • Loder, J. W., , Petrie B. , , and Gawarkiewicz G. , 1998: The coastal ocean off northwestern North America: A large-scale view. The Global Coastal Ocean: Regional Studies and Syntheses, A. R. Robinson and K. H. Brink, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 11, John Wiley and Sons, 105–133.

  • Magnell, B. A., , Spiegel S. L. , , Scarlet R. I. , , and Andrews J. B. , 1980: The relationship of tidal and low-frequency currents on the north slope of Georges Bank. J. Phys. Oceanogr., 10, 12001212, doi:10.1175/1520-0485(1980)010<1200:TROTAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, C., , White P. , , Washburn L. , , Terrill E. , , Emery B. , , and Otero M. , 2007: Interpretation of coastal HF radar–derived surface currents with high-resolution drifter data. J. Atmos. Oceanic Technol., 24, 666680, doi:10.1175/JTECH1998.1.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., , and Rosenfeld L. , 1996: Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res., 101, 20 66920 686, doi:10.1029/96JC01663.

    • Search Google Scholar
    • Export Citation
  • Peacock, T., , and Haller G. , 2013: Lagrangian coherent structures: The hidden skeleton of fluid flows. Phys. Today, 66, 4147, doi:10.1063/PT.3.1886.

    • Search Google Scholar
    • Export Citation
  • Roarty, H. J., and et al. , 2010: Operation and application of a regional high-frequency radar network in the Mid-Atlantic Bight. Mar. Technol. Soc. J., 44, 133145, doi:10.4031/MTSJ.44.6.5.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., , and Glenn S. M. , 1999: Adaptive sampling for ocean forecasting. Naval Res. Rev., 51, 2838.

  • Seroka, G., , Kohut J. , , Palamara L. , , Glenn S. , , Roarty H. , , Bowers L. , , and Dunk R. , 2013: Spatial evaluation of high-resolution modeled offshore winds using estimated winds derived from a network of HF radars. Proc. Oceans—San Diego, 2013, San Diego, CA, IEEE, 1–5.

  • Teague, C. C., , Vesecky J. F. , , and Fernandez D. M. , 1997: HF radar instruments, past to present. Oceanography, 10 (2), 4043, doi:10.5670/oceanog.1997.19.

    • Search Google Scholar
    • Export Citation
  • Terrill, E., and et al. , 2006: Data management and real-time distribution in the HF-Radar National Network. OCEANS 2006, IEEE, 1–6, doi: 10.1109/OCEANS.2006.306883.

  • Ullman, D. S., , and Cornillon P. C. , 1999: Satellite-derived sea surface temperature fronts on the continental shelf off the northeast U.S. coast. J. Geophys. Res., 104, 23 45923 478, doi:10.1029/1999JC900133.

    • Search Google Scholar
    • Export Citation
  • Wahba, G., 1990: Estimating the smoothing parameter. Spline Models for Observational Data. Society for Industrial Mathematics, SIAM, 45–65, doi: 10.1137/1.9781611970128.ch4.

  • Wang, G., , Garcia D. , , Liu Y. , , de Jeu R. , , and Dolman A. J. , 2012: A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations. Environ. Modell. Software, 30, 139142, doi:10.1016/j.envsoft.2011.10.015.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., , and Sentchev A. , 2009: Mapping radar-derived sea surface currents with a variational method. Cont. Shelf Res., 29, 17111722, doi:10.1016/j.csr.2009.05.016.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 21
PDF Downloads 58 58 8

Gap Filling of the Coastal Ocean Surface Currents from HFR Data: Application to the Mid-Atlantic Bight HFR Network

View More View Less
  • 1 Department of Computer Sciences, Jerusalem College of Technology, Jerusalem, Israel, and Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
  • | 2 Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
© Get Permissions
Restricted access

Abstract

High-frequency radar (HFR) surface current data are an increasingly utilized tool for capturing complex dynamics of coastal ocean systems worldwide. The radar is uniquely capable of sampling relevant temporal and spatial scales of nearshore processes that impact event response activities and basic coastal ocean research. HFR is a shore-based remote sensing system and is therefore subject to data gaps, which are predominately due to environmental effects, like increased external noise or low signal due to ocean surface conditions. Many applications of these surface current data require that these gaps be filled, such as Lagrangian numerical models, to estimate material transport and dispersion. This study introduces a new penalized least squares regression method based on a three-dimensional discrete cosine transform method to reconstruct hourly HFR surface current data with a horizontal resolution of 6 km. The method explicitly uses both time and space variability to predict the missing value. Furthermore, the method is fast, robust, and requires relatively low computer memory storage. This paper evaluates the method against two scenarios of common data gaps found in HFR networks currently deployed around the world. The validation is based on observed surface current maps along the mid-Atlantic coast of the United States with specific vectors removed to replicate these common gap scenarios. The evaluation shows that the new method is robust and particularly well suited to fill a more common scenario with complete data coverage surrounding an isolated data gap. It is shown that the real-time application of the method is suitable for filling data gaps in large oceanography datasets with high accuracy.

Denotes Open Access content.

Corresponding author address: Erick Fredj, Department of Computer Sciences, Jerusalem College of Technology, 21 Havaad Haleumi Street, P.O. Box 16031, 91160 Jerusalem, Israel. E-mail: erick.fredj@gmail.com

Abstract

High-frequency radar (HFR) surface current data are an increasingly utilized tool for capturing complex dynamics of coastal ocean systems worldwide. The radar is uniquely capable of sampling relevant temporal and spatial scales of nearshore processes that impact event response activities and basic coastal ocean research. HFR is a shore-based remote sensing system and is therefore subject to data gaps, which are predominately due to environmental effects, like increased external noise or low signal due to ocean surface conditions. Many applications of these surface current data require that these gaps be filled, such as Lagrangian numerical models, to estimate material transport and dispersion. This study introduces a new penalized least squares regression method based on a three-dimensional discrete cosine transform method to reconstruct hourly HFR surface current data with a horizontal resolution of 6 km. The method explicitly uses both time and space variability to predict the missing value. Furthermore, the method is fast, robust, and requires relatively low computer memory storage. This paper evaluates the method against two scenarios of common data gaps found in HFR networks currently deployed around the world. The validation is based on observed surface current maps along the mid-Atlantic coast of the United States with specific vectors removed to replicate these common gap scenarios. The evaluation shows that the new method is robust and particularly well suited to fill a more common scenario with complete data coverage surrounding an isolated data gap. It is shown that the real-time application of the method is suitable for filling data gaps in large oceanography datasets with high accuracy.

Denotes Open Access content.

Corresponding author address: Erick Fredj, Department of Computer Sciences, Jerusalem College of Technology, 21 Havaad Haleumi Street, P.O. Box 16031, 91160 Jerusalem, Israel. E-mail: erick.fredj@gmail.com
Save