• Banner, M. L., 1990: Equilibrium spectra of wind waves. J. Phys. Oceanogr., 20, 966984, doi:10.1175/1520-0485(1990)020<0966:ESOWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracher, A., and Coauthors, 2015: Report on IOCCG workshop: Phytoplankton composition from space; Towards a validation strategy for satellite algorithms. NASA Tech. Memo. NASA/TM-2015-217528, 40 pp.

  • Clark, D. B., , Lenain L. , , Feddersen F. , , Boss E. , , and Guza R. T. , 2014: Aerial imaging of fluorescent dye in the near shore. J. Atmos. Oceanic Technol., 31, 14101421, doi:10.1175/JTECH-D-13-00230.1.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., , Belcher S. E. , , and Sullivan P. P. , 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282, doi:10.1175/2010JPO4377.1.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., , and Melville W. K. , 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38, 395425, doi:10.1146/annurev.fluid.38.050304.092129.

    • Search Google Scholar
    • Export Citation
  • Huang, Z.-C., , Reineman B. D. , , Lenain L. , , Melville W. K. , , and Middleton J. H. , 2012: Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system. J. Geophys. Res., 117, C03016, doi:10.1029/2011JC007203.

    • Search Google Scholar
    • Export Citation
  • Kahru, M., , and Mitchell B. G. , 1998: Spectral reflectance and absorption of a massive red tide off southern California. J. Geophys. Res., 103, 21 60121 609, doi:10.1029/98JC01945.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 6991, doi:10.1029/JC074i028p06991.

  • Kleiss, J. M., , and Melville W. K. , 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, doi:10.1175/2010JPO4383.1.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., , and Melville W. K. , 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243, doi:10.1175/2010JTECHO744.1.

    • Search Google Scholar
    • Export Citation
  • Lee, Z. P., , Marra J. , , Perry M. J. , , and Kahru M. , 2015: Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment. J. Mar. Syst., 149, 5059, doi:10.1016/j.jmarsys.2014.11.015.

    • Search Google Scholar
    • Export Citation
  • Liu, C., 2009: Beyond pixels: Exploring new representations and applications for motion analysis. Ph.D. thesis, Massachusetts Institute of Technology, 164 pp.

  • Marmorino, G. O., , Smith G. B. , , Toporkov J. V. , , Sletten M. A. , , Perkovic D. , , and Frasier S. J. , 2008: Evolution of ocean slicks under a rising wind. J. Geophys. Res., 113, C04030, doi:10.1029/2007JC004538.

    • Search Google Scholar
    • Export Citation
  • McCarthy, D. D., , and Petit G. , Eds, 2004: IERS conventions (2003). IERS Tech. Note 32, 127 pp.

  • Mei, C. C., , Stiassnie M. , , and Yue D. K.-P. , 2005: Theory and Applications of Ocean Surface Waves: Part 2; Nonlinear Aspects. Advanced Series on Ocean Engineering, Vol. 23, World Scientific, 1071 pp.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., , and Matusov P. , 2002: Distribution of breaking waves at the ocean surface. Nature, 417, 5863, doi:10.1038/417058a.

  • NASA, 2008: Jason-1 Altimeter Geophysical Data Record (GDR) NetCDF. Version 1, PO.DAAC, accessed 11 March 2016. [Available online at https://podaac.jpl.nasa.gov/dataset/JASON-1_GDR_NETCDF.]

  • NASA, 2014: Moderate-resolution Imaging Spectroradiometer (MODIS) Terra Ocean Color Data, 2014 reprocessing. OB.DAAC, accessed 11 March 2016, doi:10.5067/TERRA/MODIS_OC.2014.0.

  • O’Reilly, J. E., , Maritorena S. , , Mitchell B. G. , , Siegel D. A. , , Carder K. L. , , Garver S. A. , , Kahru M. , , and McClain C. , 1998: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24 93724 953, doi:10.1029/98JC02160.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., , Lenain L. , , Castel D. , , and Melville W. K. , 2009: A portable airborne scanning lidar system for ocean and coastal applications. J. Atmos. Oceanic Technol., 26, 26262641, doi:10.1175/2009JTECHO703.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., , and Melville W. K. , 2010a: Airborne observation of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, doi:10.1175/2009JPO4127.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., , and Melville W. K. , 2010b: Numerical modeling of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 466486, doi:10.1175/2009JPO4128.1.

    • Search Google Scholar
    • Export Citation
  • Romero, L., , Melville W. K. , , and Kless J. M. , 2012: Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr., 42, 14211444, doi:10.1175/JPO-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., , Han H.-J. , , Cho S. , , Park Y.-J. , , and Ahn Y.-H. , 2012: Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J., 47, 223233, doi:10.1007/s12601-012-0024-4.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., , and Melville W. K. , 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett., 40, 30743079, doi:10.1002/grl.50584.

    • Search Google Scholar
    • Export Citation
  • Vierling, K. T., , Vierling L. A. , , Gould W. A. , , Martinuzzi S. , , and Clawges R. M. , 2008: Lidar: Shedding new light on habitat characterization and modeling. Front. Ecol. Environ, 6, 9098, doi:10.1890/070001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 4
PDF Downloads 73 73 3

The Modular Aerial Sensing System

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
  • | 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Satellite remote sensing has enabled remarkable progress in the ocean, earth, atmospheric, and environmental sciences through its ability to provide global coverage with ever-increasing spatial resolution. While exceptions exist for geostationary ocean color satellites, the temporal coverage of low-Earth-orbiting satellites is not optimal for oceanographic processes that evolve over time scales of hours to days. In hydrology, time scales can range from hours for flash floods, to days for snowfall, to months for the snowmelt into river systems. On even smaller scales, remote sensing of the built environment requires a building-resolving resolution of a few meters or better. For this broad range of phenomena, satellite data need to be supplemented with higher-resolution airborne data that are not tied to the strict schedule of a satellite orbit. To address some of these needs, a novel, portable, high-resolution airborne topographic lidar with video, infrared, and hyperspectral imaging systems was integrated. The system is coupled to a highly accurate GPS-aided inertial measurement unit (GPS IMU), permitting airborne measurements of the sea surface displacement, temperature, and kinematics with swath widths of up to 800 m under the aircraft, and horizontal spatial resolution as low as 0.2 m. These data are used to measure ocean waves, currents, Stokes drift, sea surface height (SSH), ocean transport and dispersion, and biological activity. Hydrological and terrestrial applications include measurements of snow cover and the built environment. This paper describes the system, its performance, and present results from recent oceanographic, hydrological, and terrestrial measurements.

Denotes Open Access content.

Current affiliation: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.

Corresponding author address: W. Kendall Melville, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: kmelville@ucsd.edu

Abstract

Satellite remote sensing has enabled remarkable progress in the ocean, earth, atmospheric, and environmental sciences through its ability to provide global coverage with ever-increasing spatial resolution. While exceptions exist for geostationary ocean color satellites, the temporal coverage of low-Earth-orbiting satellites is not optimal for oceanographic processes that evolve over time scales of hours to days. In hydrology, time scales can range from hours for flash floods, to days for snowfall, to months for the snowmelt into river systems. On even smaller scales, remote sensing of the built environment requires a building-resolving resolution of a few meters or better. For this broad range of phenomena, satellite data need to be supplemented with higher-resolution airborne data that are not tied to the strict schedule of a satellite orbit. To address some of these needs, a novel, portable, high-resolution airborne topographic lidar with video, infrared, and hyperspectral imaging systems was integrated. The system is coupled to a highly accurate GPS-aided inertial measurement unit (GPS IMU), permitting airborne measurements of the sea surface displacement, temperature, and kinematics with swath widths of up to 800 m under the aircraft, and horizontal spatial resolution as low as 0.2 m. These data are used to measure ocean waves, currents, Stokes drift, sea surface height (SSH), ocean transport and dispersion, and biological activity. Hydrological and terrestrial applications include measurements of snow cover and the built environment. This paper describes the system, its performance, and present results from recent oceanographic, hydrological, and terrestrial measurements.

Denotes Open Access content.

Current affiliation: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.

Corresponding author address: W. Kendall Melville, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0213. E-mail: kmelville@ucsd.edu
Save