• Assaf, G., , Gerard R. , , and Gordon A. L. , 1971: Some mechanisms of oceanic mixing revealed in aerial photographs. J. Geophys. Res., 76, 65506572, doi:10.1029/JC076i027p06550.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , Guo X. , , and Takeoka H. , 2009: A numerical study of the seasonal circulation in the Seto Inland Sea, Japan. J. Oceanogr., 65, 721736, doi:10.1007/s10872-009-0062-4.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , Freilich M. H. , , Sienkiewicz J. M. , , and Von Ahn J. M. , 2006: On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon. Wea. Rev., 134, 20552071, doi:10.1175/MWR3179.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1985: Drifter observations of coastal surface currents during CODE: The method and descriptive view. J. Geophys. Res., 90, 47414755, doi:10.1029/JC090iC03p04741.

    • Search Google Scholar
    • Export Citation
  • Dugan, J. P., and et al. , 2001: Airborne optical system for remote sensing of ocean waves. J. Atmos. Oceanic Technol., 18, 12671276, doi:10.1175/1520-0426(2001)018<1267:AOSFRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukuda, K., , Isobe A. , , Kaneda A. , , Magome S. , , Oonish H. , , and Takeoka H. , 2006: Frontal waves and nutrient transport around tidal fronts. Oceanogr. Japan, 15, 343356.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1974: Physical features of the Connecticut River outflow during high discharge. J. Geophys. Res., 79, 831846, doi:10.1029/JC079i006p00831.

    • Search Google Scholar
    • Export Citation
  • Guo, X., , Futamura A. , , and Takeoka H. , 2004: Residual currents in a semi-enclosed bay of the Seto Inland Sea, Japan. J. Geophys. Res., 109, C12008, doi:10.1029/2003JC002203.

    • Search Google Scholar
    • Export Citation
  • Han, S. C., , Kwon J. H. , , and Jekeli C. , 2001: Accurate absolute GPS positioning through satellite clock error estimation. J. Geod., 75, 3343, doi:10.1007/s001900000151.

    • Search Google Scholar
    • Export Citation
  • Haza, A. C., , Ozgokmen T. M. , , Griffa A. , , Molcard A. , , Poulain P. M. , , and Peggion G. , 2010: Transport properties in small-scale coastal flows: Relative dispersion from VHF radar measurements in the Gulf of La Spezia. Ocean Dyn., 60, 861882, doi:10.1007/s10236-010-0301-7.

    • Search Google Scholar
    • Export Citation
  • Hill, A. E., 1996: Spin-down and the dynamics of dense pool gyres in shallow seas. J. Mar. Res., 54, 471486, doi:10.1357/0022240963213538.

    • Search Google Scholar
    • Export Citation
  • JODC, 2013: JODC Data On-line Service System, continuing from 1974. Japan Oceanographic Data Center, accessed 7 January 2016. [Available online at http://jdoss1.jodc.go.jp/vpage/wave_j.html.]

  • Kako, S., , Isobe A. , , and Magome S. , 2012: Low altitude remote-sensing method to monitor marine and beach litter of various colors using a balloon equipped with a digital camera. Mar. Pollut. Bull., 64, 11561162, doi:10.1016/j.marpolbul.2012.03.024.

    • Search Google Scholar
    • Export Citation
  • Kendrick, G. A., , Hegge B. J. , , Wyllie A. , , Davidson A. , , and Lord A. , 2000: Changes in seagrass cover on success and Parmelia banks, Western Australia between 1965 and 1995. Estuarine Coastal Shelf Sci., 50, 341353, doi:10.1006/ecss.1999.0569.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., 1998: Impact of wind/wind-stress field in the North Pacific constructed by ADEOS/NSCAT data. J. Oceanogr., 54, 443456, doi:10.1007/BF02742447.

    • Search Google Scholar
    • Export Citation
  • Lathrop, R. G., , Montesano P. , , and Haag S. M. , 2006: A multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogramm. Eng. Remote Sens., 72, 665675, doi:10.14358/PERS.72.6.665.

    • Search Google Scholar
    • Export Citation
  • Lathrop, R. G., , Haag S. M. , , Merchant D. , , Kennish M. J. , , and Fertig B. , 2014: Comparison of remotely-sensed surveys vs. in situ plot-based assessments of sea grass condition in Barnegat Bay-Little Egg Harbor, New Jersey USA. J. Coastal Conserv., 18, 299308, doi:10.1007/s11852-014-0319-y.

    • Search Google Scholar
    • Export Citation
  • Lu, P., , Li Z. , , Cheng B. , , Lei R. , , and Zhang R. , 2010: Sea ice surface features in Arctic summer 2008: Aerial observations. Remote Sens. Environ., 114, 693699, doi:10.1016/j.rse.2009.11.009.

    • Search Google Scholar
    • Export Citation
  • Magome, S., , Yamashita T. , , Kohama T. , , Kaneda A. , , Hayami Y. , , Takahashi S. , , and Takeoka H. , 2007: Jellyfish patch formation investigated by aerial photography and drifter experiment. J. Oceanogr., 63, 761773, doi:10.1007/s10872-007-0065-y.

    • Search Google Scholar
    • Export Citation
  • Moore, K. A., , Wilcox D. J. , , and Orth R. J. , 2000: Analysis of the abundance of submersed aquatic vegetation communities in the Chesapeake Bay. Estuaries, 23, 115127, doi:10.2307/1353229.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , Tuchker W. B. III, , and Ligett K. A. , 2002: Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res., 107, 8048, doi:10.1029/2000JC000449.

    • Search Google Scholar
    • Export Citation
  • Pingree, R. D., , and Mardell G. T. , 1985: Solitary internal waves in the Celtic Sea. Prog. Oceanogr., 14, 431441, doi:10.1016/0079-6611(85)90021-7.

    • Search Google Scholar
    • Export Citation
  • Renner, A. H. H., , Hendricks S. , , Gerland S. , , Beckers J. , , Haas C. , , and Krumpen T. , 2013: Large-scale ice thickness distribution of first-year sea ice in spring and summer north of Svalbard. Ann. Glaciol., 54, 1318, doi:10.3189/2013AoG62A146.

    • Search Google Scholar
    • Export Citation
  • Robbins, B. D., 1997: Quantifying temporal change in seagrass areal coverage: The use of GIS and low resolution aerial photography. Aquat. Bot., 58, 259267, doi:10.1016/S0304-3770(97)00039-9.

    • Search Google Scholar
    • Export Citation
  • Ryan, J. P., , Harvey J. B. J. , , Zhang Y. , , and Woodson C. B. , 2014: Distribution of invertebrate larvae and phytoplankton in a coastal upwelling system retention zone and peripheral front. J. Exp. Mar. Biol. Ecol., 459, 5160, doi:10.1016/j.jembe.2014.05.017.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., , and Hunter J. R. , 1974: Fronts in the Irish Sea. Nature, 250, 404406, doi:10.1038/250404a0.

  • Simpson, J. H., , and Sharples J. , 2012: Introduction to the Physical and Biological Oceanography of Shelf Seas. Cambridge University Press, 448 pp.

  • Sun, Y.-J., , and Isobe A. , 2006: Numerical study of tidal front with varying sharpness in spring and neap tidal cycle. J. Oceanogr., 62, 801810, doi:10.1007/s10872-006-0099-6.

    • Search Google Scholar
    • Export Citation
  • Takano, S., , Hirayama T. , , Odaka Y. , , Higuchi M. , , and Murakami H. , 2011: The evaluation of the error characteristics of Plural GPS terminals. J. Fac. Sci. Technol. Seikei Univ., 48, 5161.

    • Search Google Scholar
    • Export Citation
  • Tschudi, M. A., , Curry J. A. , , and Maslanik J. A. , 2001: Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA. J. Geophys. Res., 106, 15 33515 344, doi:10.1029/2000JD900275.

    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., , and Guo X. , 2009: Asymmetries in tidal flow over a Seto Inland Sea scour pit. J. Mar. Res., 67, 619635, doi:10.1357/002224009791218850.

    • Search Google Scholar
    • Export Citation
  • Yanagi, T., , Ishikawa K. , , Inoue K.-I. , , and Susami S. , 1995: Convergence, divergence and vertical velocity at a tidal front in Hiuchi-Nada, Japan. J. Oceanogr., 51, 225238, doi:10.1007/BF02236526.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 14
PDF Downloads 51 51 8

A Combined Balloon Photography and Buoy-Tracking Experiment for Mapping Surface Currents in Coastal Waters

View More View Less
  • 1 Faculty of Engineering, Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Japan
  • | 2 Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan
© Get Permissions
Restricted access

Abstract

A novel observational technique to map surface ocean currents at high spatial resolution in narrow regions is developed. Low-altitude remote sensing using a digital camera suspended from a vessel-towed balloon is used to track trajectories of floating buoys deployed on the ocean. Surface-current velocities are thereafter computed by sequentially moving buoy locations on photo images converted into ground (Cartesian) coordinates. Field experiments were conducted in July and August 2013 using a balloon towed by a research vessel on the Seto Inland Sea. The image-derived currents were compared with those derived from buoy locations recorded by GPS receivers attached to each floating buoy. It was found that surface currents computed using GPS data contain unrealistic values arising from stochastic fluctuations in those data. However, the image-derived currents reproduced well convergent flows and a cyclonic eddy that accumulated foam and marine debris, as actually observed during the surveys. This performance is attributed to the fact that the image processing acts as a filter to remove erroneous buoy locations in computing surface currents. The estimated error was 4.1 cm s−1, sufficiently small to measure snapshots of surface coastal currents with magnitudes greater than several tens of centimeters per second.

Corresponding author address: Yasuyuki Miyao, Faculty of Engineering, Department of Civil and Environmental Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan. E-mail: miyao.yasuyuki.ne@ehime-u.ac.jp

Abstract

A novel observational technique to map surface ocean currents at high spatial resolution in narrow regions is developed. Low-altitude remote sensing using a digital camera suspended from a vessel-towed balloon is used to track trajectories of floating buoys deployed on the ocean. Surface-current velocities are thereafter computed by sequentially moving buoy locations on photo images converted into ground (Cartesian) coordinates. Field experiments were conducted in July and August 2013 using a balloon towed by a research vessel on the Seto Inland Sea. The image-derived currents were compared with those derived from buoy locations recorded by GPS receivers attached to each floating buoy. It was found that surface currents computed using GPS data contain unrealistic values arising from stochastic fluctuations in those data. However, the image-derived currents reproduced well convergent flows and a cyclonic eddy that accumulated foam and marine debris, as actually observed during the surveys. This performance is attributed to the fact that the image processing acts as a filter to remove erroneous buoy locations in computing surface currents. The estimated error was 4.1 cm s−1, sufficiently small to measure snapshots of surface coastal currents with magnitudes greater than several tens of centimeters per second.

Corresponding author address: Yasuyuki Miyao, Faculty of Engineering, Department of Civil and Environmental Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan. E-mail: miyao.yasuyuki.ne@ehime-u.ac.jp
Save