• Almany, G. R., , Berumen M. L. , , Thorrold S. R. , , Planes S. , , and Jones G. P. , 2007: Local replenishment of coral reef fish populations in a marine reserve. Science, 316, 742744, doi:10.1126/science.1140597.

    • Search Google Scholar
    • Export Citation
  • Beazley, D. M., 1996: SWIG: An easy to use tool for integrating scripting languages with C and C++. Proceedings of the Fourth Conference on USENIX Tcl/Tk Workshop, 1996, Vol. 4, USENIX Association, 15–15. [Available online at http://dl.acm.org/citation.cfm?id=1267498.1267513.]

  • Brickman, D., , and Smith P. C. , 2002: Lagrangian stochastic modeling in coastal oceanography. J. Atmos. Oceanic Technol., 19, 8399, doi:10.1175/1520-0426(2002)019<0083:LSMICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, C., , Liu H. , , and Beardsley R. C. , 2003: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Oceanic Technol., 20, 159186, doi:10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cowen, R. K., , and Sponaugle S. , 2009: Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci., 1, 443466, doi:10.1146/annurev.marine.010908.163757.

    • Search Google Scholar
    • Export Citation
  • Gallego, A., , and North E. W. , 2009: Initial conditions: Spawning locations. Manual of Recommended Practices for Modelling Physical Biological Interactions during Fish Early Life, E. W. North, A. Gallego, and P. Petitgas, Eds., ICES Cooperative Research Report, Vol. 295, International Council for Exploration of the Sea, 20–23.

  • Hastings, A., 1993: Complex interactions between dispersal and dynamics: Lessons from coupled logistic equations. Ecology, 74, 13621372, doi:10.2307/1940066.

    • Search Google Scholar
    • Export Citation
  • Huret, M., , Runge J. A. , , Chen C. , , Cowles G. , , Xu Q. , , and Pringle J. M. , 2007: Dispersal modeling of fish early life stages: Sensitivity with application to Atlantic cod in the western Gulf of Maine. Mar. Ecol.: Prog. Ser., 347, 261274, doi:10.3354/meps06983.

    • Search Google Scholar
    • Export Citation
  • Irisson, J.-O., , Leis J. M. , , Paris C. B. , , and Browman H. I. , 2009: Behavior and settlement. Manual of Recommended Practices for Modelling Physical Biological Interactions during Fish Early Life, E. W. North, A. Gallego, and P. Petitgas, Eds., ICES Cooperative Research Report, Vol. 295, International Council for Exploration of the Seas, 42–59.

  • Jones, B. T., , Gyory J. , , Grey E. K. , , Bartlein M. , , Ko D. S. , , Nero R. W. , , and Taylor C. M. , 2015: Transport of blue crab larvae in the northern Gulf of Mexico during the Deepwater Horizon oil spill. Mar. Ecol.: Prog. Ser., 527, 143156, doi:10.3354/meps11238.

    • Search Google Scholar
    • Export Citation
  • Kininmonth, S., , Death G. , , and Possingham H. , 2010: Graph theoretic topology of the Great but small Barrier Reef world. Theor. Ecol., 3, 7588, doi:10.1007/s12080-009-0055-3.

    • Search Google Scholar
    • Export Citation
  • Lowe, W. H., , and Allendorf F. W. , 2010: What can genetics tell us about population connectivity? Mol. Ecol., 19, 30383051, doi:10.1111/j.1365-294X.2010.04688.x.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. R., , Greenberg D. A. , , Bilgili A. , , McGillicuddy D. J. J. , , Manning J. P. , , and Aretxabaleta A. L. , 2015: Particles in the Coastal Ocean: Theory and Applications. Cambridge University Press, 560 pp.

  • Miller, C. B., , and Wheeler P. A. , 2012: Biological Oceanography. 2nd ed. Wiley-Blackwell, 464 pp.

  • Pineda, J., , Hare J. A. , , and Sponaugle S. , 2007: Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography, 20 (3), 2239, doi:10.5670/oceanog.2007.27.

    • Search Google Scholar
    • Export Citation
  • Planes, S., , Jones G. P. , , and Thorrold S. R. , 2009: Larval dispersal connects fish populations in a network of marine protected areas. Proc. Natl. Acad. Sci. USA, 106, 56935697,doi:10.1073/pnas.0808007106.

    • Search Google Scholar
    • Export Citation
  • Simons, R. D., , Siegel D. A. , , and Brown K. S. , 2013: Model sensitivity and robustness in the estimation of larval transport: A study of particle tracking parameters. J. Mar. Syst., 119 & 120, 1929, doi:10.1016/j.jmarsys.2013.03.004.

    • Search Google Scholar
    • Export Citation
  • Slatkin, M., 1987: Gene flow and the geographic structure of natural populations. Science, 236, 787792, doi:10.1126/science.3576198.

  • Tian, R. C., and et al. , 2009a: Dispersal and settlement of sea scallop larvae spawned in the fishery closed areas on Georges Bank. ICES J. Mar. Sci., 66, 21552164, doi:10.1093/icesjms/fsp175.

    • Search Google Scholar
    • Export Citation
  • Tian, R. C., and et al. , 2009b: Modeling the connectivity between sea scallop populations in the Middle Atlantic Bight and over Georges Bank. Mar. Ecol.: Prog. Ser., 380, 147160, doi:10.3354/meps07916.

    • Search Google Scholar
    • Export Citation
  • Watson, J. R., , Mitarai S. , , Siegel D. A. , , Caselle J. E. , , Dong C. , , and McWilliams J. C. , 2010: Realized and potential larval connectivity in the Southern California Bight. Mar. Ecol.: Prog. Ser., 401, 3148, doi:10.3354/meps08376.

    • Search Google Scholar
    • Export Citation
  • Watson, J. R., , Siegel D. A. , , Kendall B. E. , , Mitarai S. , , Rassweiller A. , , and Gaines S. D. , 2011: Identifying critical regions in small-world marine metapopulations. Proc. Natl. Acad. Sci. USA, 108, E907E913, doi:10.1073/pnas.1111461108.

    • Search Google Scholar
    • Export Citation
  • Watson, J. R., , Kendall B. E. , , Siegel D. A. , , and Mitarai S. , 2012: Changing seascapes, stochastic connectivity, and marine metapopulation dynamics. Amer. Nat., 180, 99112, doi:10.1086/665992.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 11
PDF Downloads 31 31 7

Resource Allocation for Lagrangian Tracking

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

Accurate estimation of the transport probabilities among regions in the ocean provides valuable information for understanding plankton transport, the spread of pollutants, and the movement of water masses. Individual-based particle-tracking models simulate a large ensemble of Lagrangian particles and are a common method to estimate these transport probabilities. Simulating a large ensemble of Lagrangian particles is computationally expensive, and appropriately allocating resources can reduce the cost of this method. Two universal questions in the design of studies that use Lagrangian particle tracking are how many particles to release and how to distribute particle releases. A method is presented for tailoring the number and the release location of particles to most effectively achieve the objectives of a study. The method detailed here is a sequential analysis procedure that seeks to minimize the number of particles that are required to satisfy a predefined metric of result quality. The study assesses the result quality as the precision of the estimates for the elements of a transport matrix and also describes how the method may be extended for use with other metrics. Applying this methodology to both a theoretical system and a particle transport model of the Gulf of Maine results in more precise estimates of the transport probabilities with fewer particles than from uniformly or randomly distributing particle releases. The application of this method can help reduce the cost of and increase the robustness of results from studies that use Lagrangian particles.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-15-0115.s1.

Corresponding author address: Benjamin T. Jones, MS 33, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. E-mail: btjones@mit.edu

Abstract

Accurate estimation of the transport probabilities among regions in the ocean provides valuable information for understanding plankton transport, the spread of pollutants, and the movement of water masses. Individual-based particle-tracking models simulate a large ensemble of Lagrangian particles and are a common method to estimate these transport probabilities. Simulating a large ensemble of Lagrangian particles is computationally expensive, and appropriately allocating resources can reduce the cost of this method. Two universal questions in the design of studies that use Lagrangian particle tracking are how many particles to release and how to distribute particle releases. A method is presented for tailoring the number and the release location of particles to most effectively achieve the objectives of a study. The method detailed here is a sequential analysis procedure that seeks to minimize the number of particles that are required to satisfy a predefined metric of result quality. The study assesses the result quality as the precision of the estimates for the elements of a transport matrix and also describes how the method may be extended for use with other metrics. Applying this methodology to both a theoretical system and a particle transport model of the Gulf of Maine results in more precise estimates of the transport probabilities with fewer particles than from uniformly or randomly distributing particle releases. The application of this method can help reduce the cost of and increase the robustness of results from studies that use Lagrangian particles.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JTECH-D-15-0115.s1.

Corresponding author address: Benjamin T. Jones, MS 33, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. E-mail: btjones@mit.edu
Save