• Ahmad, Z., , Franz B. A. , , McClain C. R. , , Kwiatkowska E. J. , , Werdell J. , , Shettle E. P. , , and Holben B. N. , 2010: New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt., 49, 55455560, doi:10.1364/AO.49.005545.

    • Search Google Scholar
    • Export Citation
  • Antoine, D., , and Nobileau D. , 2006: Recent increase in Saharan dust transport over the Mediterranean Sea, as revealed by ocean color satellite (SeaWiFS) observations. J. Geophys. Res., 111, D12214, doi:10.1029/2005JD006795.

    • Search Google Scholar
    • Export Citation
  • Aznay, O., , Santer R. , , and Zagolski F. , 2014: Validation of atmospheric scattering functions used in atmospheric correction over the ocean. Int. J. Remote Sens., 35, 49845003, doi:10.1080/01431161.2014.933282.

    • Search Google Scholar
    • Export Citation
  • Clark, D. K., , Gordon H. R. , , Voss K. J. , , Ge Y. , , Broenkow W. , , and Trees C. , 1997: Validation of atmospheric correction over the oceans. J. Geophys. Res., 102, 17 20917 217, doi:10.1029/96JD03345.

    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., , Kahn R. A. , , Remer L. A. , , and Levy R. C. , 2014: Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends. Atmos. Meas. Tech., 7, 23132335, doi:10.5194/amt-7-2313-2014.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., , and King M. D. , 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105, 20 67320 696, doi:10.1029/2000JD900282.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., , Smirnov A. , , Holben B. N. , , King M. D. , , Kaufman Y. J. , , Eck T. F. , , and Slutsker I. , 2000: Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements. J. Geophys. Res., 105, 97919806, doi:10.1029/2000JD900040.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., , Holben B. , , Eck T. F. , , Smirnov A. , , Kaufman Y. J. , , King M. D. , , Tanre D. , , and Slutsker I. , 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590608, doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., , Holben B. N. , , Reid J. S. , , Dubovik O. , , Smirnov A. , , O’Neill N. T. , , Slutsker I. , , and Kinne S. , 1999: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 104, 31 33331 349, doi:10.1029/1999JD900923.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and et al. , 2003: High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophys. Res. Lett., 30, 2035, doi:10.1029/2003GL017861.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and et al. , 2005: Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res., 110, D06202, doi:10.1029/2004JD005274.

    • Search Google Scholar
    • Export Citation
  • Esaias, W. E., and et al. , 1998: An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36, 12501265, doi:10.1109/36.701076.

    • Search Google Scholar
    • Export Citation
  • Franz, B. A., , Ainsworth E. J. , , and Bailey S. , 2001: SeaWiFS vicarious calibration: An alternative approach utilizing simultaneous in situ observations of oceanic and atmospheric optical properties. In situ aerosol optical thickness collected by the SIMBIOS program (1997–2000): Protocols, and data QC and analysis, G. S. Fargion, R. Barnes, and C. McClain, Eds., NASA Tech. Memo. NASA/TM—2001–209982, 88–96.

  • Franz, B. A., , Bailey S. W. , , Werdell P. J. , , and McClain C. R. , 2007: Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. Appl. Opt., 46, 50685082, doi:10.1364/AO.46.005068.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., 1997: Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res., 102, 17 08117 106, doi:10.1029/96JD02443.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. R., , and Wang M. , 1994: Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm. Appl. Opt., 33, 443452, doi:10.1364/AO.33.000443.

    • Search Google Scholar
    • Export Citation
  • He, X., , Pan D. , , Bai Y. , , Zhu Q. , , and Gong F. , 2011: Evaluation of the aerosol models for SeaWiFS and MODIS by AERONET data over open oceans. Appl. Opt., 50, 43534364, doi:10.1364/AO.50.004353.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and et al. , 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, doi:10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Hu, C., , Lee Z. , , and Franz B. , 2012: Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res., 117, C01011, doi:10.1029/2011JC007395.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , Zhang C. , , and Prospero J. M. , 2010: African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res., 115, D05202, doi:10.1029/2009JD012516.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., , and Gaitley B. J. , 2015: An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res. Atmos., 120, 42484281, doi:10.1002/2015JD023322.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., , Banerjee P. , , McDonald D. , , and Diner D. , 1998: Sensitivity of multiangle imaging to aerosol optical depth, and to pure-particle size distribution and composition over ocean. J. Geophys. Res., 103, 32 19532 213, doi:10.1029/98JD01752.

    • Search Google Scholar
    • Export Citation
  • Kalashnikova, O. V., , and Kahn R. A. , 2008: Mineral dust plume evolution over the Atlantic from combined MISR/MODIS aerosol retrievals. J. Geophys. Res., 113, D24204, doi:10.1029/2008JD010083.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., and et al. , 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, doi:10.5194/acp-6-1815-2006.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., , Mattoo S. , , Munchak L. A. , , Remer L. A. , , Sayer A. M. , , Patadia F. , , and Hsu N. C. , 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, doi:10.5194/amt-6-2989-2013.

    • Search Google Scholar
    • Export Citation
  • Li, L., , Fukushima H. , , Frouin R. , , Mitchell B. G. , , He M.-X. , , Uno I. , , Takamura T. , , and Ohta S. , 2003: Influence of submicron absorptive aerosol on Sea-viewing Wide Field-of-view Sensor (SeaWiFS)-derived marine reflectance during Aerosol Characterization Experiment (ACE)-Asia. J. Geophys. Res., 108, 4472, doi:10.1029/2002JD002776.

    • Search Google Scholar
    • Export Citation
  • McCarthy, S. C., , Gould R. W. Jr., , Richman J. , , Kearney C. , , and Lawson A. , 2012: Impact of aerosol model selection on water-leaving radiance retrievals from satellite ocean color imagery. Remote Sens., 4, 36383665, doi:10.3390/rs4123638.

    • Search Google Scholar
    • Export Citation
  • McClain, C. R., , Cleave M. L. , , Feldman G. C. , , Gregg W. W. , , Hooker S. B. , , and Kuring N. , 1998: Science quality SeaWiFS data for global biosphere research. Sea Technol., 39, 1016.

    • Search Google Scholar
    • Export Citation
  • Mélin, F., , and Zibordi G. , 2010: Vicarious calibration of satellite ocean color sensors at two coastal sites. Appl. Opt., 49, 798810, doi:10.1364/AO.49.000798.

    • Search Google Scholar
    • Export Citation
  • Mélin, F., , Clerici M. , , Zibordi G. , , Holben B. N. , , and Smirnov A. , 2010: Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data. Remote Sens. Environ., 114, 230250, doi:10.1016/j.rse.2009.09.003.

    • Search Google Scholar
    • Export Citation
  • Mélin, F., , Zibordi G. , , Carlund T. , , Holben B. N. , , and Stefan S. , 2013a: Validation of SeaWiFS and MODIS Aqua/Terra aerosol products in coastal regions of European marginal seas. Oceanologia, 55, 2751, doi:10.5697/oc.55-1.027.

    • Search Google Scholar
    • Export Citation
  • Mélin, F., , Zibordi G. , , and Holben B. N. , 2013b: Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions. IEEE Geosci. Remote Sens. Lett., 10, 11851189, doi:10.1109/LGRS.2012.2235408.

    • Search Google Scholar
    • Export Citation
  • Morel, A., , and Prieur L. , 1977: Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709722, doi:10.4319/lo.1977.22.4.0709.

  • Morel, A., , Antoine D. , , and Gentili B. , 2002: Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt., 41, 62896306, doi:10.1364/AO.41.006289.

    • Search Google Scholar
    • Export Citation
  • Nobileau, D., , and Antoine D. , 2005: Detection of blue-absorbing aerosols using near-infrared and visible (ocean color) remote sensing observations. Remote Sens. Environ., 95, 368397, doi:10.1016/j.rse.2004.12.020.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, J. E., , Maritorena S. , , Mitchell B. G. , , Siegel D. A. , , Carder K. L. , , Garver S. A. , , Kahru M. , , and McClain C. , 1998: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24 93724 953, doi:10.1029/98JC02160.

    • Search Google Scholar
    • Export Citation
  • Porter, J., , and Nielsen T. , 2002: Atmospheric correction near Hawaii: Clear sky and volcano plumes. Proc. Sixth Pan Ocean Remote Sensing Conf., Bali, Indonesia, PORSEC, 3 pp. [Available online at http://www.soest.hawaii.edu/porter/Bali_Atmos_Corr.pdf.]

  • Ransibrahmanakul, V., , and Stumpf R. P. , 2006: Correcting ocean colour reflectance for absorbing aerosols. Int. J. Remote Sens., 27, 17591774, doi:10.1080/01431160500380604.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and et al. , 2008: Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res., 113, D14S07, doi:10.1029/2007JD009661.

    • Search Google Scholar
    • Export Citation
  • Russell, P. B., and et al. , 2010: Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys., 10, 11551169, doi:10.5194/acp-10-1155-2010.

    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., , Hsu N. C. , , Bettenhausen C. , , Ahmad Z. , , Holben B. N. , , Smirnov A. , , Thomas G. E. , , and Zhang J. , 2012: SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. J. Geophys. Res., 117, D03206, doi:10.1029/2011JD016599.

    • Search Google Scholar
    • Export Citation
  • Schollaert, S. E., , Yoder J. A. , , O’Reilly J. E. , , and Westphal D. L. , 2003: Influence of dust and sulfate aerosols on ocean color spectra and chlorophyll a concentrations derived from SeaWiFS off the U.S. east coast. J. Geophys. Res., 108, 3191, doi:1029/2000JC000555.

    • Search Google Scholar
    • Export Citation
  • Schuster, G. L., , Dubovik O. , , and Holben B. N. , 2006: Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res., 111, D07207, doi:10.1029/2005JD006328.

    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., and et al. , 2013: Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ., 135, 7791, doi:10.1016/j.rse.2013.03.025.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., , Holben B. N. , , Eck T. F. , , Dubovik O. , , and Slutsker I. , 2000: Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ., 73, 337349, doi:10.1016/S0034-4257(00)00109-7.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., , Holben B. N. , , Kaufman Y. J. , , Dubovik O. , , Eck T. F. , , Slutsker I. , , Pietras C. , , and Halthore R. , 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59, 501523, doi:10.1175/1520-0469(2002)059<0501:OPOAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., and et al. , 2011: Maritime aerosol network as a component of AERONET—First results and comparison with global aerosol models and satellite retrievals. Atmos. Meas. Tech., 4, 583597, doi:10.5194/amt-4-583-2011.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., , and Toon O. B. , 1999: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104, 94239444, doi:10.1029/1998JD200048.

    • Search Google Scholar
    • Export Citation
  • Wang, M., Ed., 2010: Atmospheric correction for remotely-sensed ocean-colour products. IOCCG Report Series 10, 78 pp.

  • Zibordi, G., and et al. , 2009: AERONET-OC: A network for the validation of ocean color primary products. J. Atmos. Oceanic Technol., 26, 16341651, doi:10.1175/2009JTECHO654.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 8
PDF Downloads 40 40 3

The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type

View More View Less
  • 1 Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, Maryland
  • | 3 Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, and Science and Data Systems, Inc., Silver Spring, Maryland
  • | 4 Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm atmospheric correction with ~13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD440) is overestimated for AOD below ~0.1–0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value <~0.96. AOD440 and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.

Corresponding author address: Ralph A. Kahn, Earth Science Division, NASA Goddard Space Flight Center, Mail Code 613, Greenbelt, MD 20771. E-mail: ralph.kahn@nasa.gov

Abstract

As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-view Sensor (SeaWiFS) algorithm atmospheric correction with ~13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD440) is overestimated for AOD below ~0.1–0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value <~0.96. AOD440 and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.

Corresponding author address: Ralph A. Kahn, Earth Science Division, NASA Goddard Space Flight Center, Mail Code 613, Greenbelt, MD 20771. E-mail: ralph.kahn@nasa.gov
Save