• Abraham, J. P., , Gorman J. M. , , Reseghetti F. , , Trenberth K. E. , , and Minkowycz W. J. , 2011: A new method of calculating ocean temperatures using expendable bathythermographs. Energy Environ. Res., 1, 1211, doi:10.5539/eer.v1n1p2.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., , Gorman J. M. , , Reseghetti F. , , Sparrow E. M. , , and Minkowycz W. J. , 2012a: Drag coefficients for rotating expendable bathythermographs and the impact of launch parameters on depth predictions. Numer. Heat Transfer, 62A, 2543.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., , Gorman J. M. , , Reseghetti F. , , Sparrow E. M. , , and Minkowycz W. J. , 2012b: Turbulent and transitional modeling of drag on oceanographic measurement devices. Modell. Simul. Eng., 2012, 567864, doi:10.1155/2012/567864.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., and et al. , 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., , Fasullo J. T. , , and Laden G. , 2014a: Continued global warming in the midst of natural climate fluctuations. Rep. Natl. Cent. Sci. Educ., 34, 2.12.9.

    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., , Gorman J. M. , , Reseghetti F. , , Sparrow E. M. , , Stark J. R. , , and Shepard T. G. , 2014b: Modeling and numerical simulation of the forces acting on a sphere during early-water entry. Ocean Eng., 76, 19, doi:10.1016/j.oceaneng.2013.11.015.

    • Search Google Scholar
    • Export Citation
  • Bailey, R. J., , Philips H. E. , , and Meyers G. , 1989: Relevance to TOGA of systematic XBT errors. Western Pacific International Meeting and Workshop on TOGA COARE: Proceedings, J. Picaute, R. Lukas, and T. Delcroix, Eds., ORSTOM, 775784.

  • Boyer, T. P., and et al. , 2013: World Ocean Database 2013. S. Levitus and A. Mishonov, Eds., NOAA Atlas NESDIS 72, 209 pp., doi:10.7289/V5NZ85MT.

  • Bringas, F., , and Goni G. , 2015: Early dynamics of Deep Blue XBT probes. J. Atmos. Oceanic Technol., 32, 22532263, doi:10.1175/JTECH-D-15-0048.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., , and Zhu J. , 2014a: Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett., 41, 72767283, doi:10.1002/2014GL061881.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., , and Zhu J. , 2014b: Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J. Atmos. Oceanic Technol., 31, 13831396, doi:10.1175/JTECH-D-13-00220.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., , Zhu J. , , Cowley R. , , Boyer T. , , and Wijffels S. , 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31, 17931825, doi:10.1175/JTECH-D-13-00197.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., , Zhu J. , , and Abraham J. P. , 2015: Global upper ocean heat content estimation: Recent progresses and the remaining challenges. Atmos. Oceanic Sci. Lett., 8, 333338, doi:10.3878/AOSL20150031.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., and et al. , 2016: XBT science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00031.1, in press.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and et al. , 2011: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi:10.1029/2011GL048794.

    • Search Google Scholar
    • Export Citation
  • Cowley, R., , Wijffels S. , , Cheng L. , , Boyer T. P. , , and Kizu S. , 2013: Biases in expendable bathythermograph data: A new view based on historical side-by-side comparison. J. Atmos. Oceanic Technol., 30, 11951225, doi:10.1175/JTECH-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Cowley, R., , Rintoul S. , , Rosenberg M. , , Chase Z. , , Reseghetti F. , , and Wijffels S. , 2014: XBT and CTD pairs dataset version 2. CSIRO, accessed November 2014, doi:10.4225/08/543F60A3F1690.

  • Domingues, C. M., , Church J. A. , , White N. J. , , Glecker P. J. , , Wijffels S. E. , , Barker P. M. , , and Dunn J. R. , 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, doi:10.1038/nature07080.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , Gleckler P. J. , , Landerer F. W. , , and Taylor K. E. , 2014: Quantifying underestimates of long-term upper-ocean warming. Nat. Climate Change, 4, 9991005, doi:10.1038/nclimate2389.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., , and Robinson A. R. , 1977: XBT measurements of thermal gradients in the MODE eddy. J. Phys. Oceanogr., 7, 300302, doi:10.1175/1520-0485(1977)007<0300:XMOTGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goes, M., , Baringer M. , , and Goni G. , 2015: The impact of historical biases on the XBT-derived meridional overturning circulation estimates at 34°S. Geophys. Res. Lett., 42, 18481855, doi:10.1002/2014GL061802.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., 2011: Depth biases in XBT data diagnosed using bathymetry data. J. Atmos. Oceanic Techol., 28, 287300, doi:10.1175/2010JTECHO773.1.

    • Search Google Scholar
    • Export Citation
  • Gorman, J. M., , Abraham J. P. , , Schwalbach D. B. , , Shepard T. S. , , Stark J. R. , , and Reseghetti F. , 2014: Experimental verification of drag forces on spherical objects entering water. J. Mar. Biol. Oceanogr., 3, doi:10.4172/2324-8661.1000126.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. R., , and Reseghetti F. , 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, doi:10.1016/j.dsr.2010.03.011.

    • Search Google Scholar
    • Export Citation
  • Hallock, Z. R., , and Teague W. J. , 1991: The fall rate of the T-7 XBT. J. Atmos. Oceanic Technol., 9, 490483, doi:10.1175/1520-0426(1992)009<0470:TFROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and Yoritaka Y. , 1987: Detection of systematic errors in XBT data and their correction. J. Oceanogr. Soc. Japan, 43, 6876, doi:10.1007/BF02110635.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , and Yoshikawa Y. , 1991: Reexamination of the depth error in XBT data. J. Atmos. Oceanic Technol., 8, 422429, doi:10.1175/1520-0426(1991)008<0422:ROTDEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., , Rual P. , , Bailey R. , , Sy A. , , and Szabados M. , 1994: Calculation of new depth equations for expendable bathythermographs using a temperature-error-free method (application to Sippican/TSK T-7, T-6 and T-4 XBTs). Intergovernmental Oceanographic Commission Technical Series 42, UNESCO Technical Papers in Marine Science 67, 46 pp.

  • Hanawa, K., , Rual P. , , Bailey R. , , Sy A. , , and Szabados M. , 1995: A new depth time equation for Sippican or TSK T-7, T-6 and T-4 expendable bathythermographs (XBT). Deep Sea Res. I, 42, 14231451, doi:10.1016/0967-0637(95)97154-Z.

    • Search Google Scholar
    • Export Citation
  • Hazelworth, J. B., 1966: Quantitative analysis of some bathythermograph errors. ASWEPS Rep. 11, U.S. Naval Oceanographic Office Tech. Rep. TR-180, 27 pp.

  • Ishii, M., , and Kimoto M. , 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287299, doi:10.1007/s10872-009-0027-7.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., , Kimoto M. , , and Kachi M. , 2003: Historical ocean subsurface temperature analysis with error estimates. Mon. Wea. Rev., 131, 5173, doi:10.1175/1520-0493(2003)131<0051:HOSTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kizu, S., , Itoh S. , , and Watanabe T. , 2005: Inter-manufacturer difference and temperature dependency of the fall-rate of T-5 expendable bathythermograph. J. Oceanogr., 61, 905912, doi:10.1007/s10872-006-0008-z.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., , Antonov J. I. , , Boyer T. P. , , Locarnini R. A. , , Garcia H. E. , , and Mishonov A. V. , 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., , Good S. A. , , Gouretski V. V. , , Ishii M. , , Johnson G. C. , , Palmer M. D. , , Smith D. M. , , and Willis J. K. , 2010: Robust warming of the global upper ocean. Nature, 465, 334337, doi:10.1038/nature09043.

    • Search Google Scholar
    • Export Citation
  • Nuccitelli, D., , Way R. , , Painting R. , , Church J. A. , , and Cook J. , 2012: Comment on “Ocean heat content and Earth’s radiation imbalance. II. Relation to climate shifts.” Phys. Lett., 376A, 34663468, doi:10.1016/j.physleta.2012.10.010.

    • Search Google Scholar
    • Export Citation
  • Reseghetti, F., , Borghini M. , , and Manzella G. M. R. , 2007: Factors affecting the quality of XBT data—Results of analyses on profiles from the Western Mediterranean Sea. Ocean Sci., 3, 5975, doi:10.5194/os-3-59-2007.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and Cornuelle B. , 1987: Digitization and calibration of the expendable bathythermograph. Deep-Sea Res., 34A, 299307, doi:10.1016/0198-0149(87)90088-4.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , Church J. , , Gilson J. , , Monselesan D. , , Sutton P. , , and Wijffels S. , 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, doi:10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Schwalbach, D. S., , Shepard T. , , Kane S. , , Siglin D. , , Harrington T. , , and Abraham J. P. , 2014: Effect of impact velocity and mass ratio during vertical sphere water entry. Dev. Appl. Oceanic Eng., 3, 5562.

    • Search Google Scholar
    • Export Citation
  • Seaver, G. A., , and Kuleshov S. , 1982: Experimental and analytical error of the expendable bathythermograph. J. Phys. Oceanogr., 12, 592600, doi:10.1175/1520-0485(1982)012<0592:EAAEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shepard, T., , Abraham J. P. , , Schwalbach D. S. , , Kane S. , , Sigling D. , , and Harrington T. , 2014: Velocity and density effect on impact force during water entry of spheres. J. Geophys. Remote Sens., 3, 129, doi:10.4172/2169-0049.1000129.

    • Search Google Scholar
    • Export Citation
  • Stark, J. S., , Gorman J. M. , , Hennessey M. P. , , Reseghetti F. , , Willis J. K. , , Lyman J. M. , , Abraham J. P. , , and Borghini M. , 2011: A computational method for determining XBT depths. Ocean Sci., 7, 733743, doi:10.5194/os-7-733-2011.

    • Search Google Scholar
    • Export Citation
  • Thadathil, P., , Saran A. K. , , Gopalakrishna V. V. , , Vethamony P. , , Araligidad N. , , and Bailey R. , 2002: XBT fall rate in waters of extreme temperature: A case study in the Antarctic Ocean. J. Atmos. Oceanic Technol., 19, 391396, doi:10.1175/1520-0426-19.3.391.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Fasullo J. T. , , and Balmaseda M. A. , 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, doi:10.1175/JCLI-D-13-00294.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Zhang Y. , , Fasullo J. T. , , and Taguchi S. , 2015: Climate variability and relationships between top-of-atmosphere radiation and temperatures on Earth. J. Geophys. Res. Atmos., 120, 36423659, doi:10.1002/2014JD022887.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., , Willis J. , , Domingues C. M. , , Barker P. , , White N. J. , , Gronell A. , , Ridgway K. , , and Church J. A. , 2008: Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Climate, 21, 56575672, doi:10.1175/2008JCLI2290.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 108 5
PDF Downloads 44 44 3

Quantification of the Effect of Water Temperature on the Fall Rate of Expendable Bathythermographs

View More View Less
  • 1 School of Engineering, University of St. Thomas, St. Paul, Minnesota
  • | 2 Oceans and Atmosphere Flagship, CSIRO, Hobart, Tasmania, Australia
  • | 3 International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

A very large portion of the historical information on ocean temperatures has been measured using expendable bathythermograph (XBT) devices. For decades, these devices provided the majority of global information. It is, therefore, important to quantify their accuracy and identify biases in this important historical dataset. Here, calculations are made of the influence of water temperature on the rate of descent of the XBT devices into the ocean waters. In colder regions, the larger viscosity of the water is expected to cause a greater drag force on the device, which would slow the descent. It was found through computational fluid dynamic models that the impact of temperature and viscosity on the probe descent is approximately 2.2% for water temperatures that range from 0° to 27°C. Probe-specific temperature-dependent fall rate equations were applied to 269 collocated XBT/conductivity–temperature–depth (CTD) measurements from two different research cruises. It was found that the probe-specific descent equations were an improvement over the uncorrected method. Next, in an effort to automate the process, the fall rate coefficients were related to the topmost measured temperature in the water column. With this relationship, comparisons were made between the probe-specific descent calculations and 2937 high-resolution XBT–CTD pairs. It was found that again, the new methodology outperformed the standard fall rate equation. The new method was also compared with an independent correction method that was previously published. It was found that both new methods were improvements upon the industry-standard fall rate calculation. Subsequent calculations using the top-100-m water temperature were performed and were found to be statistically insignificant compared to the proposed simplified method.

Corresponding author address: John Abraham, School of Engineering, University of St. Thomas, OSS 100, 2115 Summit Ave., St. Paul, MN 55105-1079. E-mail: jpabraham@stthomas.edu

Abstract

A very large portion of the historical information on ocean temperatures has been measured using expendable bathythermograph (XBT) devices. For decades, these devices provided the majority of global information. It is, therefore, important to quantify their accuracy and identify biases in this important historical dataset. Here, calculations are made of the influence of water temperature on the rate of descent of the XBT devices into the ocean waters. In colder regions, the larger viscosity of the water is expected to cause a greater drag force on the device, which would slow the descent. It was found through computational fluid dynamic models that the impact of temperature and viscosity on the probe descent is approximately 2.2% for water temperatures that range from 0° to 27°C. Probe-specific temperature-dependent fall rate equations were applied to 269 collocated XBT/conductivity–temperature–depth (CTD) measurements from two different research cruises. It was found that the probe-specific descent equations were an improvement over the uncorrected method. Next, in an effort to automate the process, the fall rate coefficients were related to the topmost measured temperature in the water column. With this relationship, comparisons were made between the probe-specific descent calculations and 2937 high-resolution XBT–CTD pairs. It was found that again, the new methodology outperformed the standard fall rate equation. The new method was also compared with an independent correction method that was previously published. It was found that both new methods were improvements upon the industry-standard fall rate calculation. Subsequent calculations using the top-100-m water temperature were performed and were found to be statistically insignificant compared to the proposed simplified method.

Corresponding author address: John Abraham, School of Engineering, University of St. Thomas, OSS 100, 2115 Summit Ave., St. Paul, MN 55105-1079. E-mail: jpabraham@stthomas.edu
Save