• Brito, M., , Smeed D. , , and Griffiths G. , 2014: Underwater glider reliability and implications for survey design. J. Atmos. Oceanic Technol., 31, 28582870, doi:10.1175/JTECH-D-13-00138.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., , Eriksen C. C. , , and Jones C. P. , 2003: Autonomous buoyancy-driven underwater gliders. Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths, Ed., Taylor and Francis, 37–58.

  • Davis, R. E., , Ohman M. D. , , Rudnick D. L. , , Sherman J. T. , , and Hodges B. , 2008: Glider surveillance of physics and biology in the southern California Current system. Limnol. Oceanogr., 53, 21512168, doi:10.4319/lo.2008.53.5_part_2.2151.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., , Kessler W. S. , , and Sherman J. T. , 2012: Gliders measure western boundary current transport from the south Pacific to the equator. J. Phys. Oceanogr., 42, 20012013, doi:10.1175/JPO-D-12-022.1.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., , Osse T. J. , , Light R. D. , , Wen T. , , Lehman T. W. , , Sabin P. L. , , Ballard J. W. , , and Chiodi A. M. , 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Jacox, M. G., , Edwards C. A. , , Kahru M. , , Rudnick D. L. , , and Kudela R. M. , 2015: The potential for improving remote primary productivity estimates through subsurface chlorophyll and irradiance measurement. Deep-Sea Res. II, 112, 107116, doi:10.1016/j.dsr2.2013.12.008.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., , and Rudnick D. L. , 2015: Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained observations by underwater gliders, 2006–2012. Deep-Sea Res. II, 112, 6178, doi:10.1016/j.dsr2.2014.03.009.

    • Search Google Scholar
    • Export Citation
  • Liu, X., 2012: Survival Analysis: Models and Applications. John Wiley & Sons, 446 pp., doi:10.1002/9781118307656.

  • Mazzini, P. L. F., , Barth J. A. , , Shearman R. K. , , and Erofeev A. , 2014: Buoyancy-driven coastal currents off Oregon during fall and winter. J. Phys. Oceanogr., 44, 28542876, doi:10.1175/JPO-D-14-0012.1.

    • Search Google Scholar
    • Export Citation
  • McClatchie, S., 2014: Regional Fisheries Oceanography of the California Current System. Springer, 235 pp., doi:10.1007/978-94-007-7223-6.

    • Search Google Scholar
    • Export Citation
  • McClatchie, S., and et al. , 2012: Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight. J. Geophys. Res., 117, C04020, doi:10.1029/2011JC007565.

    • Search Google Scholar
    • Export Citation
  • Ohman, M. D., and et al. , 2013: Autonomous ocean measurements in the California Current Ecosystem. Oceanography, 26 (3), 1825, doi:10.5670/oceanog.2013.41.

    • Search Google Scholar
    • Export Citation
  • Pelland, N. A., , Eriksen C. C. , , and Lee C. M. , 2013: Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, doi:10.1175/JPO-D-12-086.1.

    • Search Google Scholar
    • Export Citation
  • Powell, J. R., , and Ohman M. D. , 2015: Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System. Deep-Sea Res. II, 112, 7990, doi:10.1016/j.dsr2.2014.04.002.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and et al. , 2009: The Argo Program observing the global ocean with profiling floats. Oceanography, 22 (2), 3443, doi:10.5670/oceanog.2009.36.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., 2016: Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci., 8, 519541, doi:10.1146/annurev-marine-122414-033913.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., , and Cole S. T. , 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, doi:10.1029/2010JC006849.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., , Davis R. E. , , Eriksen C. C. , , Fratantoni D. M. , , and Perry M. J. , 2004: Underwater gliders for ocean research. Mar. Technol. Soc. J., 38, 7384, doi:10.4031/002533204787522703.

    • Search Google Scholar
    • Export Citation
  • Send, U., , Regier L. , , and Jones B. , 2013: Use of underwater gliders for acoustic data retrieval from subsurface oceanographic instrumentation and bidirectional communication in the deep ocean. J. Atmos. Oceanic Technol., 30, 984998, doi:10.1175/JTECH-D-11-00169.1.

    • Search Google Scholar
    • Export Citation
  • Sherman, J., , Davis R. E. , , Owens W. B. , , and Valdes J. , 2001: The autonomous underwater glider “Spray.” IEEE J. Oceanic Eng., 26, 437446, doi:10.1109/48.972076.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1989: The Slocum mission. Oceanography, 2 (1), 2225, doi:10.5670/oceanog.1989.26.

  • Todd, R. E., , Rudnick D. L. , , and Davis R. E. , 2009: Monitoring the greater San Pedro Bay region using autonomous underwater gliders during fall of 2006. J. Geophys. Res., 114, C06001, doi:10.1029/2008JC005086.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , Rudnick D. L. , , Davis R. E. , , and Ohman M. D. , 2011a: Underwater gliders reveal rapid arrival of El Niño effects off California’s coast. Geophys. Res. Lett., 38, L03609, doi:10.1029/2010GL046376.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , Rudnick D. L. , , Mazloff M. R. , , Davis R. E. , , and Cornuelle B. D. , 2011b: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., , Rudnick D. L. , , Mazloff M. R. , , Cornuelle B. D. , , and Davis R. E. , 2012: Thermohaline structure in the California Current System: Observations and modeling of spice variance. J. Geophys. Res., 117, C02008, doi:10.1029/2011JC007589.

    • Search Google Scholar
    • Export Citation
  • Webb, D. C., , Simonetti P. J. , , and Jones C. P. , 2001: SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Oceanic Eng., 26, 447452, doi:10.1109/48.972077.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 203 203 23
PDF Downloads 156 156 21

Spray Underwater Glider Operations

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
© Get Permissions
Restricted access

Abstract

Operational statistics for the Spray underwater glider are presented to demonstrate capabilities for sustained observations. An underwater glider is an autonomous device that profiles vertically by changing buoyancy and flies horizontally on wings. The focus has been on sustained observations of boundary currents to take advantage of the glider’s small size, which allows it to be deployed and recovered from small vessels close to land, and the fine horizontal resolution delivered by the glider, which is scientifically desirable in boundary regions. Since 2004, Spray underwater gliders have been deployed for over 28 000 days, traveling over 560 000 km, and delivering over 190 000 profiles. More than 10 gliders, on average, have been in the water since 2012. Statistics are given in the form of histograms for 297 completed glider missions of longer than 5 days. The statistics include mission duration, number of dives, distance over ground, and horizontal and vertical distance through water. A discussion of problems, losses, and short missions includes a survival analysis. The most extensive work was conducted in the California Current system, where observations on three across-shorelines have been sustained, with 97% coverage since 2009. While the authors have certain advantages as developers and builders of the Spray underwater glider and Spray may have design and construction advantages, they believe these statistics are a sound basis for optimism about the widespread future of gliders in oceanographic observing.

Corresponding author address: Daniel L. Rudnick, Scripps Institution of Oceanography, 9500 Gilman Drive, Mail Code 0213, La Jolla, CA 92093-0213. E-mail: drudnick@ucsd.edu

Abstract

Operational statistics for the Spray underwater glider are presented to demonstrate capabilities for sustained observations. An underwater glider is an autonomous device that profiles vertically by changing buoyancy and flies horizontally on wings. The focus has been on sustained observations of boundary currents to take advantage of the glider’s small size, which allows it to be deployed and recovered from small vessels close to land, and the fine horizontal resolution delivered by the glider, which is scientifically desirable in boundary regions. Since 2004, Spray underwater gliders have been deployed for over 28 000 days, traveling over 560 000 km, and delivering over 190 000 profiles. More than 10 gliders, on average, have been in the water since 2012. Statistics are given in the form of histograms for 297 completed glider missions of longer than 5 days. The statistics include mission duration, number of dives, distance over ground, and horizontal and vertical distance through water. A discussion of problems, losses, and short missions includes a survival analysis. The most extensive work was conducted in the California Current system, where observations on three across-shorelines have been sustained, with 97% coverage since 2009. While the authors have certain advantages as developers and builders of the Spray underwater glider and Spray may have design and construction advantages, they believe these statistics are a sound basis for optimism about the widespread future of gliders in oceanographic observing.

Corresponding author address: Daniel L. Rudnick, Scripps Institution of Oceanography, 9500 Gilman Drive, Mail Code 0213, La Jolla, CA 92093-0213. E-mail: drudnick@ucsd.edu
Save