• Alexander, M. A., Bladé I. , Newman M. , Lanzante J. R. , Lau N.-C. , and Scott J. D. , 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., Fennig K. , Klepp C. , Bakan S. , Grassl H. , and Schulz J. , 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data, 2, 215234, doi:10.5194/essd-2-215-2010.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., Klepp C. , Fennig K. , Bakan S. , Grassl H. , and Schulz J. , 2011: Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteor. Climatol., 50, 379398, doi:10.1175/2010JAMC2341.1.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., Katsaros K. B. , Mestas-Nuñez A. M. , Drennan W. M. , Forde E. B. , and Roquet H. , 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16, 637656, doi:10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., Grodsky S. A. , Katsaros K. B. , Mestas-Nuñez A. M. , Blanke B. , and Desbiolles F. , 2013: Improvement in air–sea flux estimates derived from satellite observations. Int. J. Remote Sens., 34, 52435261, doi:10.1080/01431161.2013.787502.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and Kent E. C. , 2011: Air–sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, doi:10.1002/joc.2059.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., Kent E. C. , and Taylor P. K. , 2004: An analytic model of heating errors in marine air temperatures from ships. J. Atmos. Oceanic Technol., 21, 11981215, doi:10.1175/1520-0426(2004)021<1198:AAMOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourras, D., 2006: Comparison of five satellite-derived latent heat flux products to moored buoy data. J. Climate, 19, 62916313, doi:10.1175/JCLI3977.1.

    • Search Google Scholar
    • Export Citation
  • Bumke, K., Schlundt M. , Kalisch J. , Macke A. , and Kleta H. , 2014: Measured and parameterized energy fluxes estimated for Atlantic transects of R/V Polarstern. J. Phys. Oceanogr., 44, 482491, doi:10.1175/JPO-D-13-0152.1.

    • Search Google Scholar
    • Export Citation
  • Caires, S., and Sterl A. , 2003: Validation of ocean wind and wave data using triple collocation. J. Geophys. Res., 108, 3098, doi:10.1029/2002JC001491.

    • Search Google Scholar
    • Export Citation
  • Carsey, F. D., 1992: Microwave Remote Sensing of Sea Ice. Geophys. Monogr., Vol. 68, Amer. Geophys. Union, 462 pp.

  • Chou, S.-H., Nelkin E. J. , Ardizzone J. , and Atlas R. M. , 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17, 39733989, doi:10.1175/1520-0442(2004)017<3973:ACOLHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., Roberts J. B. , and Bogdanoff A. S. , 2015: The SeaFlux Turbulent Flux Dataset version 1.0: Documentation. Version 1.2, WHOI Tech. Rep., 5 pp. [Available online at http://seaflux.org/seaflux_data/DOCUMENTATION/SeaFluxDocumentationV12.pdf.]

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fennig, K., Andersson A. , Bakan S. , Klepp C. , and Schröder M. , 2012: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS 3.2—Monthly means / 6-hourly composites. CM SAF, accessed 2 December 2015, doi:10.5676/EUM_SAF_CM/HOAPS/V001.

  • Fennig, K., Andersson A. , and Schröder M. , 2013: Fundamental climate data record of SSM/I brightness temperatures. CM SAF, accessed 2 December 2015, doi:10.5676/EUM_SAF_CM/FCDR_SSMI/V001.

  • Fuhrhop, R., and Simmer C. , 1996: SSM/I brightness temperature corrections for incidence angle variations. J. Atmos. Oceanic Technol., 13, 246254, doi:10.1175/1520-0426(1996)013<0246:SBTCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2010: Implementation plan for the Global Observing System for climate in support of the UNFCCC. WMO GCOS-138, GTOS-76, WMO/TD-1523, 186 pp. [Available online at http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf.]

  • Gulev, S., Jung T. , and Ruprecht E. , 2007: Estimation of the impact of sampling errors in the VOS observations on air-sea fluxes. Part I: Uncertainties in climate means. J. Climate, 20, 279301, doi:10.1175/JCLI4010.1.

    • Search Google Scholar
    • Export Citation
  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790, doi:10.1109/36.58964.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Iwasaki, S., and Kubota M. , 2012: Algorithms for estimation of air-specific humidity using TMI data. Int. J. Remote Sens., 33, 74137430, doi:10.1080/01431161.2012.685974.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., Wick G. A. , and Bates J. J. , 2006: Near-surface retrieval of air temperature and specific humidity using multisensor microwave satellite observations. J. Geophys. Res., 111, D10306, doi:10.1029/2005JD006431.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., Wick G. A. , and Robertson F. R. , 2009: Improved multisensor approach to satellite-retrieved near-surface specific humidity observations. J. Geophys. Res., 114, D16303, doi:10.1029/2008JD011341.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., Abdalla S. , Hersbach H. , and Bidlot J.-R. , 2007: Error estimation of buoy, satellite, and model wave height data. J. Atmos. Oceanic Technol., 24, 16651677, doi:10.1175/JTECH2069.1.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Taylor P. K. , 1995: A comparison of sensible and latent heat flux estimates for the North Atlantic Ocean. J. Phys. Oceanogr., 25, 15301549, doi:10.1175/1520-0485(1995)025<1530:ACOSAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Taylor P. K. , 1996: Accuracy of humidity measurements on ships: Consideration of solar radiation effects. J. Atmos. Oceanic Technol., 13, 13171321, doi:10.1175/1520-0426(1996)013<1317:AOHMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and Berry D. I. , 2005: Quantifying random measurement errors in Voluntary Observing Ships’ meteorological observations. Int. J. Climatol., 25, 843856, doi:10.1002/joc.1167.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Taylor P. K. , Truscott B. S. , and Hopkins J. S. , 1993: The accuracy of voluntary observing ships’ meteorological observations—Results of the VSOP-NA. J. Atmos. Oceanic Technol., 10, 591608, doi:10.1175/1520-0426(1993)010<0591:TAOVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Challenor P. G. , and Taylor P. K. , 1999: A statistical determination of the random observational errors present in voluntary observing ships meteorological reports. J. Atmos. Oceanic Technol., 16, 905914, doi:10.1175/1520-0426(1999)016<0905:ASDOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Woodruff S. D. , and Berry D. I. , 2007: Metadata from WMO publication No. 47 and an assessment of voluntary observing ship observation heights in ICOADS. J. Atmos. Oceanic Technol., 24, 214234, doi:10.1175/JTECH1949.1.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Rayner N. A. , Berry D. I. , Saunby M. , Moat B. I. , Kennedy J. , and Parker D. , 2013: Global analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2 data set. J. Geophys. Res. Atmos., 118, 12811298, doi:10.1002/jgrd.50152.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., Berry D. I. , Prytherch J. , and Roberts J. B. , 2014: A comparison of global marine surface-specific humidity datasets from in situ observations and atmospheric reanalysis. Int. J. Climatol., 34, 355376, doi:10.1002/joc.3691.

    • Search Google Scholar
    • Export Citation
  • Kinzel, J., 2013: Validation of HOAPS latent heat fluxes against parameterizations applied to R/V Polarstern data for 1995-1997. M.S. thesis, Dept. of Marine Meteorology, University of Kiel, 102 pp. [Available online at http://core.kmi.open.ac.uk/display/16271577.]

  • Klepp, C., Andersson A. , and Bakan S. , 2008: The HOAPS climatology: Evaluation of latent heat flux. Flux News, No. 5, WCRP, Geneva, Switzerland, 30–32.

  • Köhl, A., and Stammer D. , 2008: Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J. Phys. Oceanogr., 38, 19131930, doi:10.1175/2008JPO3775.1.

    • Search Google Scholar
    • Export Citation
  • Kubota, M. K., and Hihara T. , 2008: Retrieval of surface air specific humidity over the ocean using AMSR-E measurements. Sensors, 8, 80168026, doi:10.3390/s8128016.

    • Search Google Scholar
    • Export Citation
  • Kubota, M. K., Iwasaka N. , Kizu S. , Konda M. , and Kutsuwada K. , 2002: Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO). J. Oceanogr., 58, 213225, doi:10.1023/A:1015845321836.

    • Search Google Scholar
    • Export Citation
  • Kubota, M. K., Kano A. , Muramatsu H. , and Tomita H. , 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16, 670678, doi:10.1175/1520-0442(2003)016<0670:IOVSLH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1986: Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon. Wea. Rev., 114, 15911602, doi:10.1175/1520-0493(1986)114<1591:SRBMMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Carroll, A. G., Eyre J. R. , and Saunders R. W. , 2008: Three-way error analysis between AATSR, AMSR-E, and in situ sea surface temperature observations. J. Atmos. Oceanic Technol., 25, 11971207, doi:10.1175/2007JTECHO542.1.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Rossow W. B. , 2011: The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J. Geophys. Res., 116, D12202, doi:10.1029/2010JD015472.

    • Search Google Scholar
    • Export Citation
  • Prytherch, J., Kent E. C. , Fangohr S. , and Berry D. I. , 2014: A comparison of SSM/I-derived global marine surface-specific humidity datasets. Int. J. Climatol., 35, 23592381. doi:10.1002/joc.4150.

    • Search Google Scholar
    • Export Citation
  • Roberts, J. B., Clayson C. A. , Robertson F. R. , and Jackson D. L. , 2010: Predicting near-surface atmospheric variables from Special Sensor Microwave/Imager using neural networks with a first-guess approach. J. Geophys. Res., 115 , D19113, doi:10.1029/2009JD013099.

    • Search Google Scholar
    • Export Citation
  • Romanou, A., Rossow W. B. , and Chou S.-H. , 2006: Decorrelation scales of high-resolution turbulent fluxes at the ocean surface and a method to fill in gaps in satellite data products. J. Climate, 19, 33783393, doi:10.1175/JCLI3773.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., Tselioudis G. , Polak A. , and Jakob C. , 2005: Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys. Res. Lett., 32, L21812, doi:10.1029/2005GL024584.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., 1996: Satellite remote sensing of evaporation over sea. Radiation and Water in the Climate System: Remote Measurements, E. Raschke, Ed., NATO ASI Series, Vol. 45, Springer-Verlag, 431–461.

  • Schlüssel, P., and Albert A. , 2001: Latent heat flux at the sea surface retrieved from combined TMI and VIRS measurements of TRMM. Int. J. Remote Sens., 22, 19751998, doi:10.1080/01431160118529.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., Schanz L. , and Englisch G. , 1995: Retrieval of latent heat fluxes and longwave irradiance at the sea surface from SSM/I and AVHRR measurements. Adv. Space Res., 16, 107116, doi:10.1016/0273-1177(95)00389-V.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., Schlüssel P. , and Grassl H. , 1993: Water vapor in the atmospheric boundary layer over oceans from SSM/I measurements. Int. J. Remote Sens., 14, 27732789, doi:10.1080/01431169308904308.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., Meywerk J. , Ewald S. , and Schlüssel P. , 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10, 27822795, doi:10.1175/1520-0442(1997)010<2782:EOSDLH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scipal, K., Dorigo W. , and de Jeu R. , 2010: Triple collocation—A new tool to determine the error structure of global soil moisture products. 2010 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, IEEE, 4426–4429, doi:10.1109/IGARSS.2010.5652128.

  • Shie, C.-L., Hilburn K. , Chiu L. S. , Adler R. , Lin I.-I. , Nelkin E. J. , Ardizzone J. , and Gao S. , 2012: Goddard satellite-based surface turbulent fluxes, daily grid F13, version 3. Goddard Earth Science Data and Information Services Center, accessed 2 December 2015, doi:10.5067/MEASURES/GSSTF/DATA304.

  • Smith, S. R., Hughes P. J. , and Bourassa M. A. , 2011: A comparison of nine monthly air-sea flux products. Int. J. Climatol., 31, 10021027, doi:10.1002/joc.2225.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., 1998: Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res., 103, 77557766, doi:10.1029/97JC03180.

    • Search Google Scholar
    • Export Citation
  • Winterfeldt, J., Andersson A. , Klepp C. , Bakan S. , and Weisse R. , 2010: Comparison of HOAPS, QuikSCAT, and buoy wind speed in the eastern North Atlantic and the North Sea. IEEE Trans. Geosci. Remote Sens., 48, 338348, doi:10.1109/TGRS.2009.2023982.

    • Search Google Scholar
    • Export Citation
  • WMO, 2013: International list of selected, supplementary and auxiliary ships. WMO, accessed 2 December 2015. [Available online at ftp://ftp.wmo.int/wmo-ddbs/Pub47Ships130930.data.]

  • Woodruff, S. D., Diaz H. F. , Elms J. D. , and Worley S. J. , 1998: COADS Release 2 data and metadata enhancements for improvements of marine surface flux fields. Phys. Chem. Earth, 23, 517526, doi:10.1016/S0079-1946(98)00064-0.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS Release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Zwieback, S., Scipal K. , Dorigo W. , and Wagner W. , 2012: Structural and statistical properties of the collocation technique for error characterization. Nonlinear Processes Geophys., 19, 6980, doi:10.5194/npg-19-69-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 117 4
PDF Downloads 82 35 0

Decomposition of Random Errors Inherent to HOAPS-3.2 Near-Surface Humidity Estimates Using Multiple Triple Collocation Analysis

View More View Less
  • 1 Satellite-based Climate Monitoring, Deutscher Wetterdienst, Offenbach Germany
  • | 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • | 3 Satellite-based Climate Monitoring, Deutscher Wetterdienst, Offenbach, Germany
Restricted access

Abstract

Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF, which, among others, are based on near-surface specific humidity . However, the random retrieval error () remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data, version 3.2 (HOAPS, version 3.2), dataset. The methodology makes use of multiple triple collocation (MTC) analysis between 1995 and 2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive Ocean–Atmosphere Data Set (ICOADS), serving as the in situ ground reference. The MTC approach permits the derivation of as the sum of model uncertainty and sensor noise , while random uncertainties due to in situ measurement errors () and collocation () are isolated concurrently. Results show an average of 1.1 ± 0.3 g kg−1, whereas the mean () is in the order of 0.5 ± 0.1 g kg−1 (0.5 ± 0.3 g kg−1). Regional analyses indicate a maximum of exceeding 1.5 g kg−1 within humidity regimes of 12–17 g kg−1, associated with the single-parameter, multilinear retrieval applied in HOAPS. Multidimensional bias analysis reveals that global maxima are located off the Arabian Peninsula.

Corresponding author address: Julian Kinzel, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany. E-mail: julian.kinzel@dwd.de

Abstract

Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF, which, among others, are based on near-surface specific humidity . However, the random retrieval error () remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data, version 3.2 (HOAPS, version 3.2), dataset. The methodology makes use of multiple triple collocation (MTC) analysis between 1995 and 2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive Ocean–Atmosphere Data Set (ICOADS), serving as the in situ ground reference. The MTC approach permits the derivation of as the sum of model uncertainty and sensor noise , while random uncertainties due to in situ measurement errors () and collocation () are isolated concurrently. Results show an average of 1.1 ± 0.3 g kg−1, whereas the mean () is in the order of 0.5 ± 0.1 g kg−1 (0.5 ± 0.3 g kg−1). Regional analyses indicate a maximum of exceeding 1.5 g kg−1 within humidity regimes of 12–17 g kg−1, associated with the single-parameter, multilinear retrieval applied in HOAPS. Multidimensional bias analysis reveals that global maxima are located off the Arabian Peninsula.

Corresponding author address: Julian Kinzel, Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach, Germany. E-mail: julian.kinzel@dwd.de
Save