• Appleton, E., 1927: The existence of more than one ionised layer in the upper atmosphere. Nature, 120, 330330, doi:10.1038/120330a0.

  • Appleton, E., and Barnett M. , 1925: Local reflection of wireless waves from the upper atmosphere. Nature, 115, 333334, doi:10.1038/115333a0.

    • Search Google Scholar
    • Export Citation
  • Bennett, A., Callaghan G. , Gaffard C. , Nash J. , and Smout R. , 2010: The effect of changes in lightning waveform propagation characteristics on the UK Met Office Long Range Lightning Location Network (ATDnet). Proc. 21st Int. Lightning Detection Conf./Third Int. Lightning Meteorology Conf., Orlando, FL, Vaisala, 13 pp. [Available online at http://www.vaisala.com/Vaisala%20Documents/Scientific%20papers/3.Bennett,%20Callaghan,%20Gaffard.pdf.]

  • Bennett, A., Gaffard C. , Nash J. , Callaghan G. , and Atkinson N. , 2011: The effect of modal interference on VLF long-range lightning location networks using the waveform correlation technique. J. Atmos. Oceanic Technol., 28, 9931006, doi:10.1175/2011JTECHA1527.1.

    • Search Google Scholar
    • Export Citation
  • Bilitza, D., McKinnell L. , Reinisch B. , and Fuller-Rowell T. , 2011: The international reference ionosphere today and in the future. J. Geod., 85, 909920, doi:10.1007/s00190-010-0427-x.

    • Search Google Scholar
    • Export Citation
  • Blakeslee, R. J., Mach D. M. , Bateman M. G. , and Bailey J. C. , 2014: Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmos. Res., 135–136, 228243, doi:10.1016/j.atmosres.2012.09.023.

    • Search Google Scholar
    • Export Citation
  • Booker, H. G., and Seaton S. L. , 1940: Relation between actual and virtual ionospheric height. Phys. Rev., 57, 8794, doi:10.1103/PhysRev.57.87.

    • Search Google Scholar
    • Export Citation
  • Breit, G., and Tuve M. , 1925: A radio method of estimating the height of the conducting layer. Nature, 116, 357357, doi:10.1038/116357a0.

    • Search Google Scholar
    • Export Citation
  • Breit, G., and Tuve M. , 1926: A test of the existence of the conducting layer. Phys. Rev., 28, 554575, doi:10.1103/PhysRev.28.554.

  • Budden, K., 1985: Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere. Cambridge University Press, 669 pp.

  • Eccles, W., 1912: On the diurnal variations of the electric waves occurring in nature, and on the propagation of electric waves round the bend of the earth. Proc. Roy. Soc. London, 87A, 7999, doi:10.1098/rspa.1912.0061.

    • Search Google Scholar
    • Export Citation
  • Goto, Y., and Narita K. , 1995: Electrical characteristics of winter lightning. J. Atmos. Terr. Phys., 57, 449458, doi:10.1016/0021-9169(94)00072-V.

    • Search Google Scholar
    • Export Citation
  • Gray, L., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.

  • Griffiths, D. J., 2013: Introduction to Electrodynamics. 4th ed. Pearson Education, 599 pp.

  • Grocott, A., Hosokawa K. , Ishida T. , Lester M. , Milan S. , Freeman M. , Sato N. , and Yukimatu A. , 2013: Characteristics of medium-scale traveling ionospheric disturbances observed near the Antarctic Peninsula by HF radar. J. Geophys. Res. Space Phys., 118, 58305841, doi:10.1002/jgra.50515.

    • Search Google Scholar
    • Export Citation
  • Guimaraes, M., Araujo L. , Pereira C. , Mesquita C. , and Visacro S. , 2014: Assessing currents of upward lightning measured in tropical regions. Atmos. Res., 149, 324332, doi:10.1016/j.atmosres.2014.01.005.

    • Search Google Scholar
    • Export Citation
  • Haigh, J., Winning A. , Toumi R. , and Harder J. , 2010: An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696699, doi:10.1038/nature09426.

    • Search Google Scholar
    • Export Citation
  • Heaviside, O., 1902: The theory of electric telegraphy. Encyclopaedia Britannica: A Dictionary of Arts, Sciences, Literature and General Information, 10th ed. H. Chrisholm, Ed., 215.

  • Kittel, C., 2004: Introduction to Solid State Physics. 8th ed. Wiley, 704 pp.

  • Lastovicka, J., 2006: Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys., 68, 479497, doi:10.1016/j.jastp.2005.01.018.

    • Search Google Scholar
    • Export Citation
  • Lee, A., 1986: An operational system for the remote location of lightning flashes using a VLF arrival time difference technique. J. Atmos. Oceanic Technol., 3, 630642, doi:10.1175/1520-0426(1986)003<0630:AOSFTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marconi, G., 1902: A note on the effect of daylight upon the propagation of electromagnetic impulses over long distances. Proc. Roy. Soc. London, 70, 344347, doi:10.1098/rspl.1902.0035.

    • Search Google Scholar
    • Export Citation
  • Maurya, A. K., and Coauthors, 2012: Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes. J. Geophys Res., 117, A11308, doi:10.1029/2012JA017876.

    • Search Google Scholar
    • Export Citation
  • Miyake, K., Suzuki T. , and Shinjou K. , 1992: Characteristics of winter lightning current on Japan Sea Coast. IEEE Trans. Power Delivery, 7, 14501457, doi:10.1109/61.141864.

    • Search Google Scholar
    • Export Citation
  • Romero, C., Rachidi F. , Paolone M. , and Rubinstein M. , 2013a: Statistical distributions of lightning currents associated with upward negative flashes based on the data collected at the Säntis (EMC) Tower in 2010 and 2011. IEEE Trans. Power Delivery, 28, 18041812, doi:10.1109/TPWRD.2013.2254727.

    • Search Google Scholar
    • Export Citation
  • Romero, C., Rachidi F. , Rubinstein M. , Paolone M. , Rakov V. A. , and Pavanello D. , 2013b: Positive lightning flashes recorded on the Säntis Tower from May 2010 to January 2012. J. Geophys. Res. Atmos., 118, 12 87912 892, doi:10.1002/2013JD020242.

    • Search Google Scholar
    • Export Citation
  • Said, R. K., Cohen M. B. , and Inan U. S. , 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, doi:10.1002/jgrd.50508.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Woods T. , Didkovsky L. , Emmert J. , and Qian L. , 2010: Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett., 37, L16103, doi:10.1029/2010GL044468.

    • Search Google Scholar
    • Export Citation
  • Volland, H., 1995: Longwave sferics propagation within the atmospheric waveguide. Handbook of Atmospheric Electrodynamics, H. Volland, Ed., Vol. II, CRC Press, 65–94.

  • Wait, J. R., 1962: Electromagnetic Waves in Stratified Media. Pergamon Press, 372 pp.

  • Wait, J. R., and Spies K. P. , 1964: Characteristics of the earth-ionosphere waveguide for VLF radio waves. National Bureau of Standards Tech. Note 300, 93 pp.

  • Yeo, K., Krivova N. , and Solanki S. , 2014: Solar cycle variation in solar irradiance. Space Sci. Rev., 186, 137167, doi:10.1007/s11214-014-0061-7.

    • Search Google Scholar
    • Export Citation
  • Zoghzoghy, F. G., Cohen M. B. , Said R. K. , Lehtinen N. G. , and Inan U. S. , 2015: Shipborne LF-VLF oceanic lightning observations and modeling. J. Geophys. Res. Atmos., 120, 10 89010 902, doi:10.1002/2015JD023226.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 409 221 3
PDF Downloads 375 172 1

Diurnal, Seasonal, and 11-yr Solar Cycle Variation Effects on the Virtual Ionosphere Reflection Height and Implications for the Met Office’s Lightning Detection System, ATDnet

View More View Less
  • 1 Met Office, Exeter, United Kingdom
Restricted access

Abstract

The virtual ionosphere reflection height variation is investigated temporally and spatially, with specific reference to the Met Office’s lightning detection network, the Arrival Time Difference Network (ATDnet). Data from this network, operating at 13.7 kHz, and a propagation model built by the Met Office based upon published theory were used to investigate this variation, specifically with regard to diurnal, seasonal, and 11-yr solar cycle variation. Variation over these temporal scales is chosen, since they correspond with variation in solar irradiance upon the earth’s atmosphere, something known to drive ionosphere height variation. The virtual ionosphere reflection height is found to vary diurnally from ~65 km for the period 1000–1600 UTC to ~80 km for the period 2200–0400 UTC, from 1 June to 31 August 2013 inclusive. A similar magnitude of variation is also observed seasonally, with the ionosphere height for daytime in August 2013 being ~64 km and for December 2013 being ~76 km. No significant variation is observed between the minimum and maximum of the last solar cycle, with a difference in ionosphere height of ~1 km at most. The potential impacts of these results upon a very low-frequency (VLF) lightning detection network such as ATDnet are discussed, with solutions such as subnetting and wave-mode dominance analysis examined.

Current affiliation: Bullard Laboratories, University of Cambridge, Cambridge, United Kingdom.

Corresponding author address: T. S. Hudson, Bullard Laboratories, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, United Kingdom. E-mail: tsh37@cam.ac.uk

Abstract

The virtual ionosphere reflection height variation is investigated temporally and spatially, with specific reference to the Met Office’s lightning detection network, the Arrival Time Difference Network (ATDnet). Data from this network, operating at 13.7 kHz, and a propagation model built by the Met Office based upon published theory were used to investigate this variation, specifically with regard to diurnal, seasonal, and 11-yr solar cycle variation. Variation over these temporal scales is chosen, since they correspond with variation in solar irradiance upon the earth’s atmosphere, something known to drive ionosphere height variation. The virtual ionosphere reflection height is found to vary diurnally from ~65 km for the period 1000–1600 UTC to ~80 km for the period 2200–0400 UTC, from 1 June to 31 August 2013 inclusive. A similar magnitude of variation is also observed seasonally, with the ionosphere height for daytime in August 2013 being ~64 km and for December 2013 being ~76 km. No significant variation is observed between the minimum and maximum of the last solar cycle, with a difference in ionosphere height of ~1 km at most. The potential impacts of these results upon a very low-frequency (VLF) lightning detection network such as ATDnet are discussed, with solutions such as subnetting and wave-mode dominance analysis examined.

Current affiliation: Bullard Laboratories, University of Cambridge, Cambridge, United Kingdom.

Corresponding author address: T. S. Hudson, Bullard Laboratories, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, United Kingdom. E-mail: tsh37@cam.ac.uk
Save