• Cao, C., Weinreb M. , and Xu H. , 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537542, doi:10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Deluccia F. , Xiong X. , Wolfe R. , and Weng F. , 2013a: Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens., 52, 11421156, doi:10.1109/TGRS.2013.2247768.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Xiong J. , Blonski S. , Liu Q. , Uprety S. , Shao X. , Bai Y. , and Weng F. , 2013b: Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos., 118, 11 66411 678, doi:10.1002/2013JD020418.

    • Search Google Scholar
    • Export Citation
  • CEOS, 2014: CEOS strategy for carbon observations from space. CEOS Carbon Task Force, JAXA and I&A Corporation, 202 pp.

  • Chander, G., Xiong X. , Choi J. , and Angal A. , 2010: Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ., 114, 925939, doi:10.1016/j.rse.2009.12.003.

    • Search Google Scholar
    • Export Citation
  • Helder, D. L., Basnet B. , and Morstad D. L. , 2010: Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens., 36, 527539, doi:10.5589/m10-085.

    • Search Google Scholar
    • Export Citation
  • Helder, D. L., Thome K. J. , Mishra N. , Chander G. , Xiong X. , Angal A. , and Choi T. , 2013: Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Trans. Geosci. Remote Sens., 51, 13601369, doi:10.1109/TGRS.2013.2243738.

    • Search Google Scholar
    • Export Citation
  • JAXA, 2009: GOSAT level 1 product format description document. NEB-080031, 77 pp.

  • Kieffer, H. H., Cook D. A. , Eliason E. M. , and Eliason P. T. , 1985: Intraband radiometric performance of the Landsat Thematic Mappers. Photogramm. Eng. Remote Sens., 51, 13311350.

    • Search Google Scholar
    • Export Citation
  • Kina, T., Shiomi K. , Kawakami S. , Mitomi Y. , Yoshida M. , Higuchi R. , Sekio N. , and Kataoka F. , 2010: Results of calibration for GOSAT TANSO. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, K. Kajiwara et al., Eds., Volume XXXVIII, Part 8, ISPRS, 91–93.

  • Kuze, A., Suto H. , Nakajima M. , and Hamazaki T. , 2009a: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48, 67166733, doi:10.1364/AO.48.006716.

    • Search Google Scholar
    • Export Citation
  • Kuze, A., Suto H. , Shiomi K. , Nakajima M. , and Hamazaki T. , 2009b: On-orbit performance and level 1 data processing of TANSO-FTS and CAI on GOSAT. Sensors, Systems, and Next-Generation Satellites XIII, R. Meynart, S. P. Neeck, and H. Shimoda, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7474), 74740I, doi:10.1117/12.830152.

  • Kuze, A., and Coauthors, 2012: Level 1 algorithms for TANSO on GOSAT: Processing and on-orbit calibrations. Atmos. Meas. Tech., 5, 24472467, doi:10.5194/amt-5-2447-2012.

    • Search Google Scholar
    • Export Citation
  • Kuze, A., and Coauthors, 2014: Long-term vicarious calibration of GOSAT short-wave sensors: Techniques for error reduction and new estimates of radiometric degradation factors. IEEE Trans. Geosci. Remote Sens., 52, 39914004, doi:10.1109/TGRS.2013.2278696.

    • Search Google Scholar
    • Export Citation
  • Kuze, A., and Coauthors, 2016: Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space. Atmos. Meas. Tech., 9, 24452461, doi:10.5194/amt-9-2445-2016.

    • Search Google Scholar
    • Export Citation
  • Markham, B. L., and Helder D. L. , 2012: Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ., 122, 3040, doi:10.1016/j.rse.2011.06.026.

    • Search Google Scholar
    • Export Citation
  • Metzler, M. D., and Malila W. A. , 1985: Characterization and comparison of Landsat-4 and Landsat-5 Thematic Mapper data. Photogramm. Eng. Remote Sensing, 51, 13151331.

    • Search Google Scholar
    • Export Citation
  • Moreau, L., Veilleux J. , and Suto H. , 2014: The GOSAT/TANSO interferometer after five years on orbit. Infrared Remote Sensing and Instrumentation XXII, M. Strojnik Scholl and G. Páez, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9219), 921902, doi:10.1117/12.2067791.

  • Shiomi, K., Kawakami S. , Kina T. , Yoshida M. , Sekio N. , Mitomi Y. , and Kataoka F. , 2007: GOSAT calibration plan. Proc. ENVISAT Symp. 2007, Montreux, Switzerland, European Space Agency, ESA SP-696, 23–27. [Available online at https://earth.esa.int/envisatsymposium/proceedings/posters/3P5/462261sh.pdf.]

  • Slocum, G., 1955: Has the amount of carbon dioxide in the atmosphere changed significantly since the beginning of the twentieth century? Mon. Wea. Rev., 83, 225231, doi:10.1175/1520-0493(1955)083<0225:HTAOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teillet, P., Barsi J. , Chander G. , and Thome K. , 2007: Prime candidate Earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. Earth Observing Systems XII, J. J. Butler and J. Xiong, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6677), 66770S, doi:10.1117/12.733156.

  • Uprety, S., Cao C. , Xiong X. , Blonski S. , Wu A. , and Shao X. , 2013: Radiometric intercomparison between Suomi-NPP VIIRS and Aqua MODIS reflective solar bands using simultaneous nadir overpass in the low latitudes. J. Atmos. Oceanic Technol., 30, 27202736, doi:10.1175/JTECH-D-13-00071.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, Y., Ota Y. , Eguchi N. , Kikuchi N. , Nobuta K. , Tran H. , Morino I. , and Yokota T. , 2011: Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos. Meas. Tech., 4, 717734, doi:10.5194/amt-4-717-2011.

    • Search Google Scholar
    • Export Citation
  • Yoshida, Y., Kikuchi N. , and Yokota T. , 2012: On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT. Atmos. Meas. Tech., 5, 25152523, doi:10.5194/amt-5-2515-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 130 3
PDF Downloads 168 112 5

Radiometric Comparison of 1.6-μm CO2 Absorption Band of Greenhouse Gases Observing Satellite (GOSAT) TANSO-FTS with Suomi-NPP VIIRS SWIR Band

View More View Less
  • 1 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 2 Center for Satellite Applications and Research, NOAA/NESDIS, College Park, Maryland
Restricted access

Abstract

An atmospheric CO2 increase has become a progressively important global concern in recent past decades. Since the 1950s, the Keeling curve has documented the atmospheric CO2 increase as well as seasonal variations, which also intrigued scientists to develop new methods for global CO2 measurements from satellites. One of the dedicated satellite missions is the CO2 measurement in the 1.6-μm shortwave infrared spectra by the Greenhouse Gases Observing Satellite (GOSAT) Thermal and Near Infrared Sensor for Carbon Observations–Fourier Transform Spectrometer (TANSO-FTS) instrument. While this spectral region has unique advantages in detecting lower-trophosphere CO2, there are many challenges because it relies on accurate measurements of reflected solar radiance from Earth’s surface. Therefore, the calibration of the TANSO-FTS CO2 has a direct impact on the CO2 retrievals and its long-term trends. Coincidently, the Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) 1.6-μm band spectrally overlaps with the TANSO-FTS CO2 band, and both satellites are in orbit with periodical simultaneous nadir overpass measurements. This study performs an intercomparison of VIIRS and the TANSO-FTS CO2 band in an effort to evaluate and improve the radiometric consistency. Understanding the differences provides feedback on how well the GOSAT TANSO-FTS is performing over time, which is critical to ensure a well-calibrated, stable, and bias-free CO2 product.

Corresponding author address: Sirish Uprety, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523. E-mail: sirish.uprety@noaa.gov; changyong.cao@noaa.gov

Abstract

An atmospheric CO2 increase has become a progressively important global concern in recent past decades. Since the 1950s, the Keeling curve has documented the atmospheric CO2 increase as well as seasonal variations, which also intrigued scientists to develop new methods for global CO2 measurements from satellites. One of the dedicated satellite missions is the CO2 measurement in the 1.6-μm shortwave infrared spectra by the Greenhouse Gases Observing Satellite (GOSAT) Thermal and Near Infrared Sensor for Carbon Observations–Fourier Transform Spectrometer (TANSO-FTS) instrument. While this spectral region has unique advantages in detecting lower-trophosphere CO2, there are many challenges because it relies on accurate measurements of reflected solar radiance from Earth’s surface. Therefore, the calibration of the TANSO-FTS CO2 has a direct impact on the CO2 retrievals and its long-term trends. Coincidently, the Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) 1.6-μm band spectrally overlaps with the TANSO-FTS CO2 band, and both satellites are in orbit with periodical simultaneous nadir overpass measurements. This study performs an intercomparison of VIIRS and the TANSO-FTS CO2 band in an effort to evaluate and improve the radiometric consistency. Understanding the differences provides feedback on how well the GOSAT TANSO-FTS is performing over time, which is critical to ensure a well-calibrated, stable, and bias-free CO2 product.

Corresponding author address: Sirish Uprety, Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523. E-mail: sirish.uprety@noaa.gov; changyong.cao@noaa.gov
Save