• Allard, J., and Carleton A. M. , 2010: Mesoscale interactions between Midwest land surface properties and convective cloud development in the warm season. Phys. Geogr., 31, 107136, doi:10.2747/0272-3646.31.2.107.

    • Search Google Scholar
    • Export Citation
  • Baker, D. G., 1975: Effect of observation time on mean temperature estimation. J. Appl. Meteor., 14, 471476, doi:10.1175/1520-0450(1975)014<0471:EOOTOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bodine, D., Klein P. M. , Arms S. C. , and Shapiro A. , 2009: Variability of surface air temperature over gently sloping terrain. J. Appl. Meteor. Climatol., 48, 11171141, doi:10.1175/2009JAMC1933.1.

    • Search Google Scholar
    • Export Citation
  • Brown, Z. G., Foster S. A. , Mahmood R. , Strudbig S. , Grabowski D. , Grogan M. , and Ferris M. M. , 2008: An overview of the Kentucky mesonet. 17th Conf. on Applied Climatology, Whistler, BC, Canada, Amer. Meteor. Soc., 1.3. [Available online at https://ams.confex.com/ams/13MontMet17AP/techprogram/paper_140983.htm.]

  • Brusberg, M. D., and Hubbard K. G. , 2001: Preliminary findings of the 1999 survey of (nonfederal) automated weather stations in the United States and Canada. Automated weather stations for applications in agriculture and water resources management: Current use and future perspectives; Proceedings of an international workshop, K. G. Hubbard and M. V. K. Sivakumar, Eds., WMO Tech. Doc. WMO/TD-1074, 229–240.

  • Bruton, J. M., Hoogenboom G. , and McClendon R. W. , 1998: Comparison of automatically and manually collected weather data. Preprints, 1998 ASAE Annual Int. Meeting, Orlando, FL, American Society of Agricultural Engineers, Paper 98-2188.

  • Changnon, S. A., and Kunkel K. E. , 1999: Rapidly expanding uses of climate data and information in agriculture and water resources: Causes and characteristics of new applications. Bull. Amer. Meteor. Soc., 80, 821830, doi:10.1175/1520-0477(1999)080<0821:REUOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., Norris W. B. , and McNider R. T. , 2009: Surface temperature variations in East Africa and possible causes. J. Climate, 22, 33423356, doi:10.1175/2008JCLI2726.1.

    • Search Google Scholar
    • Export Citation
  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707721, doi:10.1002/joc.1322.

    • Search Google Scholar
    • Export Citation
  • Durre, I., Menne M. J. , Gleason G. E. , Houston T. G. , and Vose R. S. , 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., Karl T. R. , Mason E. H. , Hughes P. Y. , and Bowman D. P. , 1996: United States Historical Climatology Network (U.S. HCN) monthly temperature and precipitation data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, ORNL/CDIAC-87, NDP-019/R3, 280 pp.

  • Fiebrich, C. A., 2009: History of surface weather observations in the United States. Earth-Sci. Rev., 93, 7784, doi:10.1016/j.earscirev.2009.01.001.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., and Crawford K. C. , 2009: Automation: A step toward improving the quality of daily temperature data by climate observing networks. J. Atmos. Oceanic Technol., 26, 12461260, doi:10.1175/2009JTECHA1241.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, K. P., Easterling D. R. , and Peterson T. C. , 1996: The influence of land use/land cover on climatological values of the diurnal temperature range. J. Climate, 9, 29412944, doi:10.1175/1520-0442(1996)009<2941:TIOLUC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gesch, D., Evans G. , Mauck J. , Hutchinson J. , and Carswell W. J. Jr., 2009: The national map—Elevation. U.S. Geological Survey Fact Sheet 2009-3053, 4 pp., accessed 24 February 2014. [Available online at http://viewer.nationalmap.gov/viewer/.]

  • Guttman, N. B., and Baker C. B. , 1996: Exploratory analysis of difference between temperature observations recorded by ASOS and conventional methods. Bull. Amer. Meteor. Soc., 77, 28652873, doi:10.1175/1520-0477(1996)077<2865:EAOTDB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hale, R. C., Gallo K. P. , and Loveland T. R. , 2008: Influences of land use/land cover conversions on climatological normals of near-surface temperature. J. Geophys. Res., 113, D14113, doi:10.1029/2007JD009548.

    • Search Google Scholar
    • Export Citation
  • Hanamean, J. R., Jr., Pielke R. A. Sr., Castro C. L. , Ojima D. S. , Reed B. C. , and Gao Z. , 2003: Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado. Meteor. Appl., 10, 203215, doi:10.1017/S1350482703003013.

    • Search Google Scholar
    • Export Citation
  • Holder, C., Boyles R. , Syed A. , Niyogi D. , and Raman S. , 2006: Comparison of collocated automated (NC ECONet) and manual (COOP) climate observations in North Carolina. J. Atmos. Oceanic Technol., 23, 671682, doi:10.1175/JTECH1873.1.

    • Search Google Scholar
    • Export Citation
  • Hoogenboom, G., 2005: The Georgia Automated Environmental Monitoring Network: Experiences with the development of a state-wide automated weather station network for Georgia. 15th Conf. on Applied Climatology, Savannah, GA, Amer. Meteor. Soc., JP1.16. [Available online at https://ams.confex.com/ams/15AppClimate/webprogram/Paper94108.html.]

  • Hoogenboom, G., Coker D. D. , Edenfield J. M. , Evans D. M. , and Fang C. , 2003: The Georgia Automated Environmental Monitoring Network: Ten years of weather information for water resources management. Proceedings of the 2003 Georgia Water Resources Conference, K. J. Hatcher, Ed., The University of Georgia, 896900.

  • Horel, J., and Coauthors, 2002: Mesowest: Cooperature mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211226, doi:10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., 2001: The Nebraska and High Plains regional experience with automated weather stations. Automated weather stations for applications in agriculture and water resources management: Current use and future perspectives; Proceedings of an international workshop, K. G. Hubbard and M. V. K. Sivakumar, Eds., WMO Tech. Doc. WMO/TD-1074, 219–227.

  • Hubbard, K. G., Rosenberg N. J. , and Nielsen D. C. , 1983: Automated weather data network for agriculture. J. Water Resour. Plann. Manage., 109, 213222, doi:10.1061/(ASCE)0733-9496(1983)109:3(213).

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., Lin X. , Baker C. B. , and Sun B. , 2004: Air temperature comparison between the MMTS and the USCRN temperature systems. J. Atmos. Oceanic Technol., 21, 15901597, doi:10.1175/1520-0426(2004)021<1590:ATCBTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hughes, P. Y., Mason E. H. , Karl T. R. , and Brower W. A. , 1992: United States Historical Climatology Network daily temperature and precipitation data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, CDIAC-50, NDP-042, 140 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Karl, T. R., and Williams C. N. Jr., 1987: An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Climate Appl. Meteor., 26, 17441763, doi:10.1175/1520-0450(1987)026<1744:AATACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., Williams C. N. Jr., Young P. J. , and Wendland W. M. , 1986: A model to estimate the time of observation bias associated with monthly mean maximum, minimum, and mean temperature for the United States. J. Climate Appl. Meteor., 25, 145160, doi:10.1175/1520-0450(1986)025<0145:AMTETT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., Williams C. N. Jr., and Quinlan F. T. , 1990: United States Historical Climatology Network (HCN) serial temperature and precipitation data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, ORNL/CDIAC-30, NDP-019/R1, 83 pp.

  • Kimball, S. K., Mulekar M. S. , Cummings S. , and Stamates J. , 2010: The University of South Alabama Mesonet and coastal observing system: A technical and statistical overview. J. Atmos. Oceanic Technol., 27, 14171439, doi:10.1175/2010JTECHA1376.1.

    • Search Google Scholar
    • Export Citation
  • Leeper, R. D., Rennie J. , and Palecki M. A. , 2015: Observational perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) network: Temperature and precipitation comparison. J. Atmos. Oceanic Technol., 32, 703721, doi:10.1175/JTECH-D-14-00172.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Williams C. N. Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, doi:10.1175/2008JCLI2263.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Williams C. N. Jr., and Vose R. S. , 2009: The United States Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007, doi:10.1175/2008BAMS2613.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Williams C. N. Jr., and Palecki M. A. , 2010: On the reliability of the U.S. surface temperature record. J. Geophys. Res., 115, D11108, doi:10.1029/2009JD013094.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Durre I. , Vose R. S. , Gleason B. E. , and Houston T. G. , 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Williams C. N. Jr., and Vose R. S. , 2014: United States Historical Climatology Network (USHCN) version 2.5 serial monthly dataset. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, accessed 4 March 2014. [Available online at http://cdiac.ornl.gov/ftp/ushcn_v2.5_monthly/.]

  • Meyer, S. J., and Hubbard K. G. , 1992: Nonfederal automated weather stations and networks in the United States and Canada: A preliminary survey. Bull. Amer. Meteor. Soc., 73, 449457, doi:10.1175/1520-0477(1992)073<0449:NAWSAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Misra, V., Michael J.-P. , Boyles R. , Chassignet E. P. , Griffin M. , and O’Brien J. J. , 2012: Reconciling the spatial distribution of the surface temperature trends in the southeastern United States. J. Climate, 25, 36103618, doi:10.1175/JCLI-D-11-00170.1.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 1998: Future of the National Weather Service Cooperative Observer Network. National Academy Press, 65 pp.

  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academy Press, 234 pp.

  • National Weather Service, 2014: Cooperative station observations. National Weather Service Manual 10-1315, Surface Observing Program, Operations and Services, 138 pp.

  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., and Coauthors, 2007: Unresolved issues with the assessment of multidecadal global land surface temperature trends. J. Geophys. Res., 112, D24S08, doi:10.1029/2006JD008229.

    • Search Google Scholar
    • Export Citation
  • Price, C. V., Nakagaki N. , Hitt K. J. , and Clawges R. M. , 2006: Enhanced historical land‐use and land‐cover data sets of the U.S. Geological Survey. U.S. Geological Survey Data Series 240. [Available online at http://pubs.usgs.gov/ds/2006/240/.]

  • Quayle, R. G., Easterling D. R. , Karl T. R. , and Hughes P. Y. , 1991: Effects of recent thermometer changes in the cooperative station network. Bull. Amer. Meteor. Soc., 72, 17181723, doi:10.1175/1520-0477(1991)072<1718:EORTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quinlan, F. T., Karl T. R. , and Williams C. N. Jr., 1987: United States Historical Climatology Network (HCN) serial temperature and precipitation data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, NDP-019, 33 pp.

  • Rothfusz, L. P., Crawford K. , Hoogenboom G. , Stooksbury D. E. , and Knox P. N. , 2006: The Georgia mesonet: Concepts and systems to demonstrate a new cooperative climate network. 22nd Conf. on Interactive Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., J5.8. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_102169.htm.]

  • Schwarz, G. E., and Alexander R. B. , 1995: State soil geographic (STATSGO) data base for the conterminous United States. USGS Open-file Rep. 95-449, accessed 29 March 2014. [Available online at http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml.]

  • Trewin, B., 2010: Exposure, instrumentation, and observing practice effects on land temperature measurements. Wiley Interdiscip. Rev.: Climate Change, 1, 490506, doi:10.1002/wcc.46.

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Commerce, 2004: COOP modernization: Building the national cooperative mesonet; Program development plan. NOAA/NWS, 73 pp.

  • Vose, R. S., Williams C. N. Jr., Peterson T. C. , Karl T. R. , and Easterling D. R. , 2003: An evaluation of the time of observation bias adjustment in the U.S. Historical Climatology Network. Geophys. Res. Lett., 30, 2046, doi:10.1029/2003GL018111.

    • Search Google Scholar
    • Export Citation
  • White, L. D., and Matlack E. , 2007: The Mississippi mesonet: Phase 2. 16th Conf. on Applied Climatology, San Antonio, TX, Amer. Meteor. Soc., JP1.6. [Available online at https://ams.confex.com/ams/87ANNUAL/techprogram/paper_119231.htm.]

  • Wu, H., Hubbard K. G. , and You J. , 2005: Some concerns when using data from the cooperative weather station networks: A Nebraska case study. J. Atmos. Oceanic Technol., 22, 592602, doi:10.1175/JTECH1733.1.

    • Search Google Scholar
    • Export Citation
  • Yao, W., and Zhong S. , 2009: Nocturnal temperature inversions in a small, enclosed basin and their relationship to ambient atmospheric conditions. Meteor. Atmos. Phys., 103, 195210, doi:10.1007/s00703-008-0341-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 135 2
PDF Downloads 222 102 5

A Comparison of Temperature Data from Automated and Manual Observing Networks in Georgia and Impacts of Siting Characteristics

View More View Less
  • 1 Department of Physics, Astronomy and Geosciences, Valdosta State University, Valdosta, Georgia
  • | 2 AgWeatherNet Program, Washington State University, Prosser, Washington
Restricted access

Abstract

The objectives of this study were to compare average monthly and seasonal maximum and minimum temperatures of the Georgia Automated Environmental Monitoring Network (AEMN) to those of geographically close (i.e., paired) manual observations from U.S. Historical Climatology Network (USHCN) stations and Cooperative Observer Program (COOP) stations for the period 2002–13, and to evaluate the extent to which differences in siting characteristics of paired AEMN–USHCN stations contribute to the temperature differences. Correlations for monthly and seasonal maximum and minimum temperatures of paired AEMN–USHCN and AEMN–COOP stations were high and almost always significant, although the correlations for seasonal minimum temperatures were slightly lower than those of maximum temperatures, especially for summer. Monthly maximum and minimum temperatures and seasonal maximum temperatures of paired AEMN–USHCN and AEMN–COOP stations were significantly different in only a few instances, while seasonal minimum temperatures were more often significantly different, particularly for summer. The stronger relationship between maximum temperatures than minimum temperatures for paired stations is logical given that minimum temperatures typically occur when a shallow, decoupled nocturnal boundary layer is more sensitive to local conditions [e.g., land use/land cover (LULC)]. Stepwise regressions confirmed that a portion of the variance of seasonal minimum temperatures of paired AEMN–USHCN stations was explained by differences in LULC, while the variance in seasonal maximum temperatures was explained better by differences in elevation. Despite the generally close relationships between temperatures of paired stations and a portion of the differences being explained, an abrupt change from manual networks to the AEMN without data adjustments would change the Georgia climate record on monthly and seasonal time scales.

Current affiliation: Institute for Sustainable Food Systems, University of Florida, Gainesville, Florida.

Corresponding author address: Dr. Jason Allard, Department of Physics, Astronomy and Geosciences, Valdosta State University, 1500 North Patterson Street, Valdosta, GA 31698-0055. E-mail: jmallard@valdosta.edu

Abstract

The objectives of this study were to compare average monthly and seasonal maximum and minimum temperatures of the Georgia Automated Environmental Monitoring Network (AEMN) to those of geographically close (i.e., paired) manual observations from U.S. Historical Climatology Network (USHCN) stations and Cooperative Observer Program (COOP) stations for the period 2002–13, and to evaluate the extent to which differences in siting characteristics of paired AEMN–USHCN stations contribute to the temperature differences. Correlations for monthly and seasonal maximum and minimum temperatures of paired AEMN–USHCN and AEMN–COOP stations were high and almost always significant, although the correlations for seasonal minimum temperatures were slightly lower than those of maximum temperatures, especially for summer. Monthly maximum and minimum temperatures and seasonal maximum temperatures of paired AEMN–USHCN and AEMN–COOP stations were significantly different in only a few instances, while seasonal minimum temperatures were more often significantly different, particularly for summer. The stronger relationship between maximum temperatures than minimum temperatures for paired stations is logical given that minimum temperatures typically occur when a shallow, decoupled nocturnal boundary layer is more sensitive to local conditions [e.g., land use/land cover (LULC)]. Stepwise regressions confirmed that a portion of the variance of seasonal minimum temperatures of paired AEMN–USHCN stations was explained by differences in LULC, while the variance in seasonal maximum temperatures was explained better by differences in elevation. Despite the generally close relationships between temperatures of paired stations and a portion of the differences being explained, an abrupt change from manual networks to the AEMN without data adjustments would change the Georgia climate record on monthly and seasonal time scales.

Current affiliation: Institute for Sustainable Food Systems, University of Florida, Gainesville, Florida.

Corresponding author address: Dr. Jason Allard, Department of Physics, Astronomy and Geosciences, Valdosta State University, 1500 North Patterson Street, Valdosta, GA 31698-0055. E-mail: jmallard@valdosta.edu
Save