• Anderson, J., Dykema J. , Goody R. , Hu H. , and Kirk-Davidoff D. , 2004: Absolute, spectrally-resolved, thermal radiance: A benchmark for climate monitoring from space. J. Quant. Spectrosc. Radiat. Transfer, 85, 367383, doi:10.1016/S0022-4073(03)00232-2.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., Wielicki B. A. , Minnis P. , and Parker L. , 1992: Cloud-property retrieval using merged HIRS and AVHRR data. J. Appl. Meteor., 31, 351369, doi:10.1175/1520-0450(1992)031<0351:CPRUMH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., Arduini R. F. , Wielicki B. A. , Minnis P. , and Tsay S.-C. , 1994: Multilevel cloud retrieval using multispectral HIRS and AVHRR data: Nighttime oceanic analysis. J. Geophys. Res., 99, 54995514, doi:10.1029/93JD02856.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., Ramanathan V. , and Tselioudis G. , 2011: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Cao, C., Jarva K. , and Ciren P. , 2007: An improved algorithm for the operational calibration of the high-resolution infrared radiation sounder. J. Atmos. Oceanic Technol., 24, 169181, doi:10.1175/JTECH2037.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Cao C. , and P. Menzel W. , 2013: Intersatellite calibration of NOAA HIRS CO2 channels for climate studies. J. Geophys. Res. Atmos., 118, 51905203, doi:10.1002/jgrd.50447.

    • Search Google Scholar
    • Export Citation
  • Choi, M., and Sweetman B. , 2010: Efficient calculation of statistical moments for structural health monitoring. Struct. Health Monit., 9, 1324, doi:10.1177/1475921709341014.

    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and Heidinger A. , 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414425, doi:10.1175/JCLI-D-11-00666.1.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., Ackerman S. A. , and Soden B. J. , 1996: Climate parameters from satellite spectral measurements. Part 1: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter. J. Climate, 9, 327344, doi:10.1175/1520-0442(1996)009<0327:CPFSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, D. A., 2011: A colour scheme for the display of astronomical intensity images. Bull. Astron. Soc. India, 39, 289295.

  • Heidinger, A. K., and Pavolonis M. J. , 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, doi:10.1175/2008JAMC1882.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Anne V. R. , and Dean C. , 2002: Using MODIS to estimate cloud contamination of the AVHRR data record. J. Atmos. Oceanic Technol., 19, 586601, doi:10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Frey R. , and Pavolonis M. , 2004: Relative merits of the 1.6 and 3.75 μm channels of the AVHRR/3 for cloud detection. Can. J. Remote Sens., 30, 182194, doi:10.5589/m03-058.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Evan A. T. , Foster M. J. , and Walther A. , 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, doi:10.1175/JAMC-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., Foster M. J. , Walther A. , and Zhao X. T. , 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, doi:10.1175/BAMS-D-12-00246.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., and Soden B. J. , 2007: Detection and correction of diurnal sampling bias in HIRS/2 brightness temperatures. J. Atmos. Oceanic Technol., 24, 14251438, doi:10.1175/JTECH2062.1.

    • Search Google Scholar
    • Export Citation
  • Jin, H., and Nasiri S. L. , 2014: Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO. J. Appl. Meteor. Climatol., 53, 10121027, doi:10.1175/JAMC-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Joiner, J., Lee H.-T. , Strow L. L. , Bhartia P. K. , Hannon S. , Miller A. J. , and Rokke L. , 1998: Radiative transfer in the 9.6 μm HIRS ozone channel using collocated SBUV-determined ozone abundances. J. Geophys. Res., 103, 19 21319 229, doi:10.1029/98JD01382.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Teixeira J. , 2009: A global climatology of temperature and water vapor variance scaling from the Atmospheric Infrared Sounder. J. Climate, 22, 55585576, doi:10.1175/2009JCLI2934.1.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, doi:10.5194/acp-14-399-2014.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., Svensson G. , Cardoso S. , Teixeira J. , and Paradise S. , 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, doi:10.1175/2010JAMC2338.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Hartmann D. L. , 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., Wolf W. W. , Menzel W. P. , Zhang W. , Huang H.-L. , and Achtor T. H. , 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 12481268, doi:10.1175/1520-0450(2000)039<1248:GSOTAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindfors, A. V., Mackenzie I. A. , Tett S. F. B. , and Shi L. , 2011: Climatological diurnal cycles in clear-sky brightness temperatures from the High-Resolution Infrared Radiation Sounder (HIRS). J. Atmos. Oceanic Technol., 28, 11991205, doi:10.1175/JTECH-D-11-00093.1.

    • Search Google Scholar
    • Export Citation
  • MacKenzie, I. A., Tett S. F. B. , and Lindfors A. V. , 2012: Climate model–simulated diurnal cycles in HIRS clear-sky brightness temperatures. J. Climate, 25, 58455863, doi:10.1175/JCLI-D-11-00552.1.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., 2013: Trends in ISCCP, MISR, and MODIS cloud-top-height and optical-depth histograms. J. Geophys. Res. Atmos., 118, 19411949, doi:10.1002/jgrd.50207.

    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and Kahn B. H. , 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47, 28952910, doi:10.1175/2008JAMC1879.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and Evan A. T. , 2015: Empirical removal of artifacts from the ISCCP and PATMOS-x satellite cloud records. J. Atmos. Oceanic Technol., 32, 691702, doi:10.1175/JTECH-D-14-00058.1.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., and Heidinger A. K. , 2004: Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteor., 43, 762778, doi:10.1175/2099.1.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., Heidinger A. K. , and Uttal T. , 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44, 804826, doi:10.1175/JAM2236.1.

    • Search Google Scholar
    • Export Citation
  • Robel, J., Ed., 2009: KLM user’s guide with NOAA-N, -P supplement. [Available online at http://ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/index.htm.]

  • Rossow, W. B., and Schiffer R. A. , 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., Iga S.-I. , Tomita H. , Tsushima Y. , and Noda A. T. , 2012: Response of upper clouds in global warming experiments obtained using a global nonhydrostatic model with explicit cloud processes. J. Climate, 25, 21782191, doi:10.1175/JCLI-D-11-00152.1.

    • Search Google Scholar
    • Export Citation
  • Schreier, M. M., Kahn B. H. , Eldering A. , Elliott D. A. , Fishbein E. , Irion F. W. , and Pagano T. S. , 2010: Radiance comparisons of MODIS and AIRS using spatial response information. J. Atmos. Oceanic Technol., 27, 13311342, doi:10.1175/2010JTECHA1424.1.

    • Search Google Scholar
    • Export Citation
  • Schreier, M. M., Kahn B. H. , Sušelj K. , Karlsson J. , Ou S. C. , Yue Q. , and Nasiri S. L. , 2014: Atmospheric parameters in a subtropical cloud regime transition derived by AIRS and MODIS: Observed statistical variability compared to ERA-Interim. Atmos. Chem. Phys., 14, 35733587, doi:10.5194/acp-14-3573-2014.

    • Search Google Scholar
    • Export Citation
  • Shi, L., and Bates J. J. , 2011: Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor. J. Geophys. Res., 116, D04108, doi:10.1029/2010JD014847.

    • Search Google Scholar
    • Export Citation
  • Shi, L., Bates J. J. , and Cao C. , 2008: Scene radiance–dependent intersatellite biases of HIRS longwave channels. J. Atmos. Oceanic Technol., 25, 22192229, doi:10.1175/2008JTECHA1058.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., Jackson D. L. , Ramaswamy V. , Schwarzkopf M. D. , and Huang X. , 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841844, doi:10.1126/science.1115602.

    • Search Google Scholar
    • Export Citation
  • Strabala, K. I., Ackerman S. A. , and Menzel W. P. , 1994: Cloud properties inferred from 8–12-μm data. J. Appl. Meteor., 33, 212229, doi:10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Su, H., and Jiang J. H. , 2013: Tropical clouds and circulation changes during the 2006/07 and 2009/10 El Niños. J. Climate, 26, 399413, doi:10.1175/JCLI-D-12-00152.1.

    • Search Google Scholar
    • Export Citation
  • Sun, B., Free M. , Yoo H. L. , Foster M. J. , Heidinger A. , and Karlsson K.-G. , 2015: Variability and trends in U.S. cloud cover: ISCCP, PATMOS-x, and CLARA-A1 compared to homogeneity-adjusted weather observations. J. Climate, 28, 43734389, doi:10.1175/JCLI-D-14-00805.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, doi:10.1175/2011JCLI3672.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, S. M., Heidinger A. K. , and Pavolonis M. J. , 2004: Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies. J. Climate, 17, 48054822, doi:10.1175/JCLI-3242.1.

    • Search Google Scholar
    • Export Citation
  • Turner, E., and Tett S. , 2014: Using longwave HIRS radiances to test climate models. Climate Dyn., 43, 11031127, doi:10.1007/s00382-013-1959-6.

    • Search Google Scholar
    • Export Citation
  • Walther, A., and Heidinger A. K. , 2012: Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteor. Climatol., 51, 13711390, doi:10.1175/JAMC-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 75 2
PDF Downloads 65 43 14

Subpixel Characterization of HIRS Spectral Radiances Using Cloud Properties from AVHRR

View More View Less
  • 1 Indiana University, Bloomington, Indiana
  • | 2 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 NOAA/NESDIS/Center for Satellite Applications and Research, Madison, Wisconsin
Restricted access

Abstract

This paper describes a cloud type radiance record derived from NOAA polar-orbiting weather satellites using cloud properties retrieved from the Advanced Very High Resolution Radiometer (AVHRR) and spectral brightness temperatures (Tb) observed by the High Resolution Infrared Radiation Sounder (HIRS). The authors seek to produce a seamless, global-scale, long-term record of cloud type and Tb statistics intended to better characterize clouds from seasonal to decadal time scales. Herein, the methodology is described in which the cloud type statistics retrieved from AVHRR are interpolated onto each HIRS footprint using two cloud classification methods. This approach is tested over the northeast tropical and subtropical Pacific Ocean region, which contains a wide variety of cloud types during a significant ENSO variation from 2008 to 2009. It is shown that the Tb histograms sorted by cloud type are realistic for all HIRS channels. The magnitude of Tb biases among spatially coincident satellite intersections over the northeast Pacific is a function of cloud type and wavelength. While the sign of the bias can change, the magnitudes are generally small for NOAA-18 and NOAA-19, and NOAA-19 and MetOp-A intersections. The authors further show that the differences between calculated standard deviations of cloud-typed Tb well exceed intersatellite calibration uncertainties. The authors argue that consideration of higher-order statistical moments determined from spectral infrared observations may serve as a useful long-term measure of small-scale spatial changes, in particular cloud types over the HIRS–AVHRR observing record.

Corresponding author address: Paul W. Staten, Indiana University, 1001 E. 10th St., Bloomington, IN 47405-1405. E-mail: pwstaten@indiana.edu

Abstract

This paper describes a cloud type radiance record derived from NOAA polar-orbiting weather satellites using cloud properties retrieved from the Advanced Very High Resolution Radiometer (AVHRR) and spectral brightness temperatures (Tb) observed by the High Resolution Infrared Radiation Sounder (HIRS). The authors seek to produce a seamless, global-scale, long-term record of cloud type and Tb statistics intended to better characterize clouds from seasonal to decadal time scales. Herein, the methodology is described in which the cloud type statistics retrieved from AVHRR are interpolated onto each HIRS footprint using two cloud classification methods. This approach is tested over the northeast tropical and subtropical Pacific Ocean region, which contains a wide variety of cloud types during a significant ENSO variation from 2008 to 2009. It is shown that the Tb histograms sorted by cloud type are realistic for all HIRS channels. The magnitude of Tb biases among spatially coincident satellite intersections over the northeast Pacific is a function of cloud type and wavelength. While the sign of the bias can change, the magnitudes are generally small for NOAA-18 and NOAA-19, and NOAA-19 and MetOp-A intersections. The authors further show that the differences between calculated standard deviations of cloud-typed Tb well exceed intersatellite calibration uncertainties. The authors argue that consideration of higher-order statistical moments determined from spectral infrared observations may serve as a useful long-term measure of small-scale spatial changes, in particular cloud types over the HIRS–AVHRR observing record.

Corresponding author address: Paul W. Staten, Indiana University, 1001 E. 10th St., Bloomington, IN 47405-1405. E-mail: pwstaten@indiana.edu
Save