• Chelton, D. B., and Wentz F. J. , 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971115, doi:10.1175/BAMS-86-8-1097.

    • Search Google Scholar
    • Export Citation
  • De Biasio, F., and Zecchetto S. , 2013: Comparison of sea surface winds derived from active and passive microwave instruments on the Mediterranean Sea. Geophysical Research Abstracts, Vol. 15, Abstract EGU2013-10157. [Available online at http://meetingorganizer.copernicus.org/EGU2013/EGU2013-10157.pdf.]

  • Draper, D. W., 2015: Calibration data book for Global Precipitation Measurement (GPM) Microwave Imager (GMI). Ball Aerospace and Technologies Corp. Tech. Rep. 2344649, Revision G, 221 pp.

  • Draper, D. W., Newell D. A. , Wentz F. J. , Krimchansky S. , and Skofronick-Jackson G. , 2015: The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 34523462, doi:10.1109/JSTARS.2015.2403303.

    • Search Google Scholar
    • Export Citation
  • Etkin, V. S., and Coauthors, 1991: Radiohydrophysical aerospace research of ocean. Academy of Science of the USSR, Space Research Institute Publ. 1749, NASA Tech. Rep. N92-10272, 84 pp.

  • GPM Science Team, 2014: GPM GMI level 1B brightness temperatures. Version 03C, continuing from March 2014 (updated daily). NASA Goddard Earth Sciences Data and Information Services Center, accessed 1 April 2015. [Available online at http://disc.gsfc.nasa.gov/datacollection/GPM_1BGMI_V03.html.]

  • Huang, X., Zhu J. , Lin M. , Zhao Y. , Wang H. , Chen C. , Peng H. , and Zhang Y. , 2014: A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer. Acta Oceanol. Sin., 33, 114119, doi:10.1007/s13131-014-0403-z.

    • Search Google Scholar
    • Export Citation
  • Imaoka, K., 2010: Status and plans for AMSR-E calibration. Proc. GPM Intersatellite Calibration Working Group (X-Cal Science Team Meeting), Orlando, FL, University of Central Florida, 15 pp. [Available online at http://www.docfoc.com/status-and-plans-for-amsr-e-calibration.]

  • Mears, C. A., Santer B. D. , Wentz F. J. , Taylor K. E. , and Wehner M. F. , 2007: Relationship between temperature and precipitable water changes over tropical oceans. Geophys. Res. Lett., 34, L24709, doi:10.1029/2007GL031936.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., Wang J. , Smith D. K. , and Wentz F. J. , 2015: Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments. J. Geophys. Res. Atmos., 120, 24922504, doi:10.1002/2014JD022694.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and Wentz F. J. , 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42, 18361849, doi:10.1109/TGRS.2004.831888.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and Wentz F. J. , 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and Earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50, 30043026, doi:10.1109/TGRS.2011.2179662.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., Ricciardulli L. , and Wentz F. J. , 2011: All-weather wind vector measurements from intercalibrated active and passive microwave satellite sensors. 2011 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, IEEE, 1509–1511, doi:10.1109/IGARSS.2011.6049354.

  • NOAA/National Centers for Environmental Prediction, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 1 April 2015, doi:10.5065/D6M043C6.

  • Piepmeier, J., Long D. , and Njoku E. , 2008: Stokes antenna temperatures. IEEE Trans. Geosci. Remote Sens., 46, 516527, doi:10.1109/TGRS.2007.909597.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002a: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., Rayner N. A. , Smith T. M. , Stokes D. C. , and Wang W. , 2002b: NOAA optimal interpolation (OI) SST analysis, version 2 (OISSTV2) 1 × 1. Accessed 1 April 2015. [Available online at ftp://ftp.emc.ncep.noaa.gov/cmb/sst/oisst_v2/.]

  • Trenberth, K. E., Fasullo J. , and Smith L. , 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758, doi:10.1007/s00382-005-0017-4.

    • Search Google Scholar
    • Export Citation
  • Twarog, E., Purdy W. E. , Gaiser P. W. , Cheung K. H. , and Kelm B. E. , 2006: WindSat on-orbit warm load calibration. IEEE Trans. Geosci. Remote Sens., 44, 516529, doi:10.1109/TGRS.2005.863300.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 2012: An evaluation of WindSat long-term stability. RSS Tech. Rep. 101512, 2 pp. [Available online at http://images.remss.com/papers/windsat/WindSat_Stability.pdf.]

  • Wentz, F. J., 2013: SSM/I version-7 calibration report. RSS Tech. Rep. 011012, 46 pp. [Available online at http://www.remss.com/papers/tech_reports/2012_Wentz_011012_Version-7_SSMI_Calibration.pdf.]

  • Wentz, F. J., 2015: A 17-year climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Climate, 28, 68826902, doi:10.1175/JCLI-D-15-0155.1.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and Schabel M. C. , 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414416, doi:10.1038/35000184.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and Meissner T. , 2016: Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations. Radio Sci., doi:10.1002/2015RS005858, in press.

  • Wentz, F. J., Gentemann C. L. , Smith D. K. , and Chelton D. B. , 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, doi:10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., Ricciardulli L. , Hilburn K. A. , and Mears C. A. , 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Yang, J. X., McKague D. S. , and Ruf C. S. , 2015: Identifying and resolving a calibration issue with GMI. IGARSS 2015: Remote Sensing: Understanding the Earth for a Safer World, IEEE, 25682571, doi:10.1109/IGARSS.2015.7326336.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 344 211 11
PDF Downloads 313 201 17

On-Orbit Absolute Calibration of the Global Precipitation Measurement Microwave Imager

View More View Less
  • 1 Remote Sensing Systems, Santa Rosa, California
  • | 2 Ball Aerospace and Technologies Corp., Boulder, Colorado
Restricted access

Abstract

The Global Precipitation Measurement (GPM) Core Observatory was launched on 27 February 2014. One of the principal instruments on the spacecraft is the GPM Microwave Imager (GMI). This paper describes the absolute calibration of the GMI antenna temperature (TA) and the earth brightness temperature (TB). The deep-space observations taken on 20 May 2014, supplemented by nadir-viewing data, are used for the TA calibration. Data from two backlobe maneuvers are used to determine the primary reflector’s cold-space spillover, which is required to convert the TA into TB. The calibrated GMI observations are compared to predictions from an ocean radiative transfer model (RTM) using collocated WindSat ocean retrievals as input. The mean difference when averaged globally over 13 months does not exceed 0.1 K for any of the nine channels from 11 to 89 GHz. The RTM comparisons also show that there are no significant solar intrusion errors in the GMI hot load. The absolute accuracy of the GMI instrument is defined as the average ocean-viewing error of the measured TA or TB relative to the true TA or TB. Based on the analyses herein, the GMI absolute accuracy for TA is estimated to be about 0.1 K rms over all channels and 0.25 K rms over all channels for TB.

Denotes content that is immediately available upon publication as open access.

Publisher’s Note: This article was revised on 17 April 2017 to include the open access designation that was missing when originally published.

Corresponding author address: Frank J. Wentz, Remote Sensing Systems, 444 Tenth Street, Santa Rosa, CA 95401. E-mail: frank.wentz@remss.com

Abstract

The Global Precipitation Measurement (GPM) Core Observatory was launched on 27 February 2014. One of the principal instruments on the spacecraft is the GPM Microwave Imager (GMI). This paper describes the absolute calibration of the GMI antenna temperature (TA) and the earth brightness temperature (TB). The deep-space observations taken on 20 May 2014, supplemented by nadir-viewing data, are used for the TA calibration. Data from two backlobe maneuvers are used to determine the primary reflector’s cold-space spillover, which is required to convert the TA into TB. The calibrated GMI observations are compared to predictions from an ocean radiative transfer model (RTM) using collocated WindSat ocean retrievals as input. The mean difference when averaged globally over 13 months does not exceed 0.1 K for any of the nine channels from 11 to 89 GHz. The RTM comparisons also show that there are no significant solar intrusion errors in the GMI hot load. The absolute accuracy of the GMI instrument is defined as the average ocean-viewing error of the measured TA or TB relative to the true TA or TB. Based on the analyses herein, the GMI absolute accuracy for TA is estimated to be about 0.1 K rms over all channels and 0.25 K rms over all channels for TB.

Denotes content that is immediately available upon publication as open access.

Publisher’s Note: This article was revised on 17 April 2017 to include the open access designation that was missing when originally published.

Corresponding author address: Frank J. Wentz, Remote Sensing Systems, 444 Tenth Street, Santa Rosa, CA 95401. E-mail: frank.wentz@remss.com
Save