• Aires, F., Prigent C. , and Rossow W. B. , 2004: Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res., 109, D04313, doi:10.1029/2003JD003527.

    • Search Google Scholar
    • Export Citation
  • Aires, F., Prigent C. , Bernardo F. , Jiménez C. , Saunders R. , and Brunel P. , 2011: A Tool to Estimate Land-Surface Emissivities at Microwave Frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690699, doi:10.1002/qj.803.

    • Search Google Scholar
    • Export Citation
  • Alishouse, J. C., Snyder S. , Vongsathorn J. , and Ferraro R. R. , 1990: Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811816, doi:10.1109/36.58967.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Bauer P. , 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, doi:10.1029/2002RS002626.

    • Search Google Scholar
    • Export Citation
  • Biswas, S. K., Farrar S. , Gopalan K. , Santos-Garcia A. , Jones W. L. , and Bilanow S. , 2013: Intercalibration of microwave radiometer brightness temperatures for the Global Precipitation Measurement mission. IEEE Trans. Geosci. Remote Sens., 51, 14651477, doi:10.1109/TGRS.2012.2217148.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos., 119, 51285141, doi:10.1002/2014JD021489.

    • Search Google Scholar
    • Export Citation
  • Carr, N., and Coauthors, 2015: The influence of surface and precipitation characteristics on TRMM TMI rainfall retrieval uncertainty. J. Hydrometeor., 16, 15961614, doi:10.1175/JHM-D-14-0194.1.

    • Search Google Scholar
    • Export Citation
  • Cordisco, E., Prigent C. , and Aires F. , 2006: Snow characterization at a global scale with passive microwave satellite observations. J. Geophys. Res., 111, D19102, doi:10.1029/2005JD006773.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., and Coauthors, 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeor., 17, 10491067, doi:10.1175/JHM-D-15-0196.1.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., and Kummerow C. D. , 2008: Toward a fully parametric retrieval of the nonraining parameters over the global oceans. J. Appl. Meteor. Climatol., 47, 15991618, doi:10.1175/2007JAMC1712.1.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Smith E. A. , Berg W. , and Huffman G. J. , 1998: A screening methodology for passive microwave precipitation retrieval algorithms. J. Atmos. Sci., 55, 15831600, doi:10.1175/1520-0469(1998)055<1583:ASMFPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., Tian L. , Olson W. S. , and Tanelli S. , 2011: A robust dual-frequency radar profiling algorithm. J. Appl. Meteor. Climatol., 50, 15431557, doi:10.1175/2011JAMC2655.1.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96, 74237435, doi:10.1029/91JD00045.

    • Search Google Scholar
    • Export Citation
  • Hamada, A., and Takayabu Y. N. , 2016: Improvements in detection of light precipitation with the Global Precipitation measurement dual-frequency precipitation radar (GPM DPR). J. Atmos. Oceanic Technol., 33, 653667, doi:10.1175/JTECH-D-15-0097.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, K. W., Tian Y. , Peters-Lidard C. D. , Ringerud S. , and Kumar S. V. , 2016: Calibration to improve forward model simulation of microwave emissivity at GPM frequencies over the U.S. Southern Great Plains. IEEE Trans. Geosci. Remote Sens., 54, 11031117, doi:10.1109/TGRS.2015.2474120.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Bolvin D. T. , Braithwaite D. , Hsu K. , Joyce R. , and Xie P. , 2011: Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA GPM Algorithm Theoretical Basis Doc. version 2.0, 26 pp. [Available online at https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.]

  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Randel D. L. , Kulie M. , Wang N.-Y. , Ferraro R. , Munchak S. J. , and Petkovic V. , 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., and Levizzani V. , 2011: The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design. Atmos. Res., 99, 443461, doi:10.1016/j.atmosres.2010.11.013.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Stephens G. L. , 2002: An uncertainty model for Bayesian Monte Carlo retrieval algorithms: Application to the TRMM observing system. Quart. J. Roy. Meteor. Soc., 128, 17131737, doi:10.1002/qj.200212858316.

    • Search Google Scholar
    • Export Citation
  • Markus, T., Powell D. C. , and Wang J. R. , 2006: Sensitivity of passive microwave snow depth retrievals to weather effects and snow evolution. IEEE Trans. Geosci. Remote Sens., 44, 6877, doi:10.1109/TGRS.2005.860208.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., and Coauthors, 2013: GPM satellite simulator over ground validation sites. Bull. Amer. Meteor. Soc., 94, 16531660, doi:10.1175/BAMS-D-12-00160.1.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and Wentz F. J. , 2012: The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50, 30043026, doi:10.1109/TGRS.2011.2179662.

    • Search Google Scholar
    • Export Citation
  • Muller, B. M., Fuelberg H. E. , and Xiang X. , 1994: Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures. J. Appl. Meteor., 33, 11331154, doi:10.1175/1520-0450(1994)033<1133:SOTEOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and Skofronick-Jackson G. , 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, doi:10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., Meneghini R. , Grecu M. , and Olson W. S. , 2016: A consistent treatment of microwave emissivity and radar backscatter for retrieval of precipitation over water surfaces. J. Atmos. Oceanic Technol., 33, 215229, doi:10.1175/JTECH-D-15-0069.1.

    • Search Google Scholar
    • Export Citation
  • Norouzi, H., Rossow W. , Temimi M. , Prigent C. , Azarderakhsh M. , Boukabara S. , and Khanbilvardi R. , 2012: Using microwave brightness temperature diurnal cycle to improve emissivity retrievals over land. Remote Sens. Environ., 123, 470482, doi:10.1016/j.rse.2012.04.015.

    • Search Google Scholar
    • Export Citation
  • Owe, M., and Van de Griend A. A. , 1998: Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resour. Res., 34, 23192327, doi:10.1029/98WR01469.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2013: Dimensionality reduction in Bayesian estimation algorithms. Atmos. Meas. Tech., 6, 23272352, doi:10.5194/amtd-6-2327-2013.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., Aires F. , and Rossow W. B. , 2006: Land surface microwave emissivities over the globe for a decade. Bull. Amer. Meteor. Soc., 87, 15731584, doi:10.1175/BAMS-87-11-1573.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. , Forman B. A. , Liu Q. , Mahanama S. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Ringerud, S., Kummerow C. , Peters-Lidard C. D. , Tian Y. , and Harrison K. , 2014: A comparison of microwave window channel retrieved and forward-modeled emissivities over the U.S. Southern Great Plains. IEEE Trans. Geosci. Remote Sens., 52, 23952412, doi:10.1109/TGRS.2013.2260759.

    • Search Google Scholar
    • Export Citation
  • Ringerud, S., Kummerow C. , and Peters-Lidard C. D. , 2015: A prototype physical database for passive microwave retrievals of precipitation over the US Southern Great Plains. J. Geophys. Res. Atmos., 120, 10 46510 482, doi:10.1002/2015JD023430.

    • Search Google Scholar
    • Export Citation
  • Salvia, M., Grings F. , Ferrazzoli P. , Barraza V. , Douna V. , Perna P. , Bruscantini C. , and Karszenbaum H. , 2011: Estimating flooded area and mean water level using active and passive microwaves: The example of Paraná River Delta floodplain. Hydrol. Earth Syst. Sci., 15, 26792692, doi:10.5194/hess-15-2679-2011.

    • Search Google Scholar
    • Export Citation
  • Shahroudi, N., and Rossow W. , 2014: Using land surface microwave emissivities to isolate the signature of snow on different surface types. Remote Sens. Environ., 152, 638653, doi:10.1016/j.rse.2014.07.008.

    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and Liu G. , 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, doi:10.1175/JHM-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Peters-Lidard C. D. , Harrison K. W. , You Y. , Ringerud S. , Kumar S. , and Turk F. J. , 2015: An examination of methods for estimating land surface microwave emissivity. J. Geophys. Res. Atmos., 120, 11 11411 128, doi:10.1002/2015JD023582.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Haddad Z. S. , and You Y. , 2014a: Principal components of multifrequency microwave land surface emissivities. Part I: Estimation under clear and precipitating conditions. J. Hydrometeor., 15, 319, doi:10.1175/JHM-D-13-08.1.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Li L. , and Haddad Z. S. , 2014b: A physically based soil moisture and microwave emissivity data set for Global Precipitation Measurement (GPM) applications. IEEE Trans. Geosci. Remote Sens., 52, 76377650, doi:10.1109/TGRS.2014.2315809.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Sikhakolli R. , Kirstetter P. , and Durden S. L. , 2015: Exploiting over-land OceanSat-2 scatterometer observations to capture short-period time-integrated precipitation. J. Hydrometeor., 16, 25192535 doi:10.1175/JHM-D-15-0046.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Discrimination and classification. Statistical Methods in the Atmospheric Sciences, International Geophysics Series, Vol. 91, Academic Press, 529–548.

    • Search Google Scholar
    • Export Citation
  • Willmes, S., Nicolaus M. , and Haas C. , 2014: The microwave emissivity variability of snow covered first-year sea ice from late winter to early summer: A model study. Cryosphere, 8, 891904, doi:10.5194/tc-8-891-2014.

    • Search Google Scholar
    • Export Citation
  • You, Y., Wang N.-Y. , and Ferraro R. , 2015: A prototype precipitation retrieval algorithm over land using passive microwave observations stratified by surface condition and precipitation vertical structure. J. Geophys. Res. Atmos., 120, 52955315, doi:10.1002/2014JD022534.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthros, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 130 76 3
PDF Downloads 61 31 1

Estimating Nonraining Surface Parameters to Assist GPM Constellation Radiometer Precipitation Algorithms

View More View Less
  • 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
Restricted access

Abstract

The joint National Aeronautics and Space Administration (NASA) and Japanese Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) is a constellation mission, centered upon observations from the core satellite dual-frequency precipitation radar (DPR) and its companion passive microwave (MW) GPM Microwave Imager (GMI). One of the key challenges for GPM is how to link the information from the single DPR across all passive MW sensors in the constellation, to produce a globally consistent precipitation product. Commonly, the associated surface emissivity and environmental conditions at the satellite observation time are interpolated from ancillary data, such as global forecast models and emissivity climatology, and are used for radiative transfer simulations and cataloging/indexing the brightness temperature (TB) observations and simulations within a common MW precipitation retrieval framework.

In this manuscript, the feasibility of an update to the surface emissivity state at or near the satellite observation time, regardless of surface type, is examined for purposes of assisting these algorithms with specification of the surface and environmental conditions. Since the constellation MW radiometers routinely observe many more nonprecipitating conditions than precipitating conditions, a principal component analysis is developed from the noncloud GMI–DPR observations as a means to characterize the emissivity state vector and to consistently track the surface and environmental conditions. The method is demonstrated and applied over known complex surface conditions to probabilistically separate cloud and cloud-free scenes. The ability of the method to globally identify “self-similar” surface locations from the TB observations without requiring any ancillary knowledge of geographical location or time is demonstrated.

Corresponding author address: Dr. F. Joseph Turk, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 300-243, Pasadena, CA 91109. E-mail: jturk@jpl.nasa.gov

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Abstract

The joint National Aeronautics and Space Administration (NASA) and Japanese Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) is a constellation mission, centered upon observations from the core satellite dual-frequency precipitation radar (DPR) and its companion passive microwave (MW) GPM Microwave Imager (GMI). One of the key challenges for GPM is how to link the information from the single DPR across all passive MW sensors in the constellation, to produce a globally consistent precipitation product. Commonly, the associated surface emissivity and environmental conditions at the satellite observation time are interpolated from ancillary data, such as global forecast models and emissivity climatology, and are used for radiative transfer simulations and cataloging/indexing the brightness temperature (TB) observations and simulations within a common MW precipitation retrieval framework.

In this manuscript, the feasibility of an update to the surface emissivity state at or near the satellite observation time, regardless of surface type, is examined for purposes of assisting these algorithms with specification of the surface and environmental conditions. Since the constellation MW radiometers routinely observe many more nonprecipitating conditions than precipitating conditions, a principal component analysis is developed from the noncloud GMI–DPR observations as a means to characterize the emissivity state vector and to consistently track the surface and environmental conditions. The method is demonstrated and applied over known complex surface conditions to probabilistically separate cloud and cloud-free scenes. The ability of the method to globally identify “self-similar” surface locations from the TB observations without requiring any ancillary knowledge of geographical location or time is demonstrated.

Corresponding author address: Dr. F. Joseph Turk, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 300-243, Pasadena, CA 91109. E-mail: jturk@jpl.nasa.gov

This article is included in the Precipitation Retrieval Algorithms for GPM special collection.

Save