Hurricane GPROF: An Optimized Ocean Microwave Rainfall Retrieval for Tropical Cyclones

Paula J. Brown Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paula J. Brown in
Current site
Google Scholar
PubMed
Close
,
Christian D. Kummerow Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Christian D. Kummerow in
Current site
Google Scholar
PubMed
Close
, and
David L. Randel Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David L. Randel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.

Corresponding author address: Paula J. Brown, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: pbrown@atmos.colostate.edu

Abstract

The Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.

Corresponding author address: Paula J. Brown, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: pbrown@atmos.colostate.edu
Save
  • Bauer, P., Amayenc P. , Kummerow C. D. , and Smith E. A. , 2001: Over-ocean rainfall retrieval from multisensor data of the Tropical Rainfall Measuring Mission. Part II: Algorithm implementation. J. Atmos. Oceanic Technol., 18, 18381855, doi:10.1175/1520-0426(2001)018<1838:OORRFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., Lopez P. , Moreau E. , Bauer P. , and Venugopal V. , 2005: Verification of TMI-adjusted rainfall analyses of tropical cyclones at ECMWF using TRMM precipitation radar. J. Appl. Meteor., 44, 16771690, doi:10.1175/JAM2300.1.

    • Search Google Scholar
    • Export Citation
  • Di Michele, S., Tassa A. , Mugnai A. , Marzano F. S. , Bauer P. , and Baptista J. P. V. P. , 2005: Bayesian algorithm for microwave-based precipitation retrieval: Description and application to TMI measurements over ocean. IEEE Trans. Geosci. Remote Sens., 43, 778791, doi:10.1109/TGRS.2005.844726.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., Turk J. , Wong T. , and Stephens G. L. , 1995: Bayesian approach to microwave precipitation profile retrieval. J. Appl. Meteor., 34, 260279, doi:10.1175/1520-0450-34.1.260.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378398, doi:10.1109/TGRS.2012.2199121.

    • Search Google Scholar
    • Export Citation
  • Gopalan, K., Wang N.-Y. , Ferraro R. , and Liu C. , 2010: Status of the TRMM 2A12 land precipitation algorithm. J. Atmos. Oceanic Technol., 27, 13431354, doi:10.1175/2010JTECHA1454.1.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and Wentz F. J. , 2008: Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, doi:10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. I. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 11641176, doi:10.1175/MWR-D-11-00134.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., Liu C. , and Zipser E. J. , 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, doi:10.1175/2011JAMC2662.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., Kruk M. C. , Levinson D. H. , Diamond H. J. , and Neumann C. J. , 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Olson W. S. , and Giglio L. , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, doi:10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Berg W. , Thomas-Stahle J. , and Masunaga H. , 2006: Quantifying global uncertainties in a simple microwave rainfall algorithm. J. Atmos. Oceanic Technol., 23, 2337, doi:10.1175/JTECH1827.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Ringerud S. , Crook J. , Randel D. , and Berg W. , 2011: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Oceanic Technol., 28, 113130, doi:10.1175/2010JTECHA1468.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C. D., Randel D. L. , Kulie M. , Wang N.-Y. , Ferraro R. , Munchak S. J. , and Petkovic V. , 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, doi:10.1175/JTECH-D-15-0039.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Franklin J. L. , 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., Zhou Y. P. , and Wu H.-T. , 2008: Have tropical cyclones been feeding more extreme rainfall? J. Geophys. Res., 113, D23113, doi:10.1029/2008JD009963.

    • Search Google Scholar
    • Export Citation
  • Liu, C., Zipser E. J. , Cecil D. J. , Nesbitt S. W. , and Sherwood S. , 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., Marks F. D. , and Chen S. S. , 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, doi:10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Mugnai A. , Panegrossi G. , Pierdicca N. , Smith E. A. , and Turk J. , 1999: Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar. IEEE Trans. Geosci. Remote Sens., 37, 596613, doi:10.1109/36.739124.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2001: Physical and microwave radiative properties of precipitating clouds. Part I: Principal component analysis of observed multichannel microwave radiances in tropical stratiform rainfall. J. Appl. Meteor., 40, 21052114, doi:10.1175/1520-0450(2001)040<2105:PAMRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Li K. , 2013: Improved passive microwave retrievals of rain rate over land and ocean. Part II: Validation and intercomparison. J. Atmos. Oceanic Technol., 30, 25092526, doi:10.1175/JTECH-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Ren, D., Lynch M. , Leslie L. , and Lemarshall J. , 2014: Sensitivity of tropical cyclone tracks and intensity to ocean surface temperature: Four cases in four different basins. Tellus, 66A, 24212, doi:10.3402/tellusa.v66.24212.

    • Search Google Scholar
    • Export Citation
  • Sanò, P., Casella D. , Mugnai A. , Schiavon G. , Smith E. A. , and Tripoli G. J. , 2013: Transitioning from CRD to CDRD in Bayesian retrieval of rainfall from satellite passive microwave measurements: Part 1. Algorithm description and testing. IEEE Trans. Geosci. Remote Sens., 51, 41194143, doi:10.1109/TGRS.2012.2227332.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164, doi:10.1175/1520-0450(2001)040<2151:CORDFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., Burland C. , and Kummerow C. , 2006: Rain retrieval from TMI brightness temperature measurements using a PR-based database. J. Appl. Meteor. Climatol., 45, 455466, doi:10.1175/JAM2346.1.

    • Search Google Scholar
    • Export Citation
  • Wang, N.-Y., Liu C. , Ferraro R. , Wolff D. , Zipser E. , and Kummerow C. , 2009: TRMM 2A12 land precipitation product—Status and future plans. J. Meteor. Soc. Japan, 87A, 237253, doi:10.2151/jmsj.87A.237.

    • Search Google Scholar
    • Export Citation
  • Wilheit, T. T., Chang A. T. C. , and Chiu L. S. , 1991: Retrieval of monthly rainfall indices from microwave radiometric measurement using probability distribution functions. J. Atmos. Oceanic Technol., 8, 118136, doi:10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and Jiang H. , 2013a: Comparison of TRMM precipitation radar and microwave imager rainfall retrievals in tropical cyclone inner cores and rainbands. J. Geophys. Res. Atmos., 118, 2942, doi:10.1029/2012JD017919.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and Jiang H. , 2013b: Investigation of PR and TMI version 6 and version 7 rainfall algorithms in landfalling tropical cyclones relative to the NEXRAD stage-IV multisensor precipitation estimate dataset. J. Appl. Meteor. Climatol., 52, 28092827, doi:10.1175/JAMC-D-12-0274.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 306 152 9
PDF Downloads 146 37 2