• Barrick, D. E., 1972: First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. Antennas Propag., 20, 210, doi:10.1109/TAP.1972.1140123.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., and Weber B. L. , 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part II: Interpretation and application. J. Phys. Oceanogr., 7, 1121, doi:10.1175/1520-0485(1977)007<0011:OTNTFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beaucage, P., Brower M. C. , and Tensen J. , 2012: Evaluation of four numerical wind flow models for wind resource mapping. Wind Energy, 17, 197208, doi:10.1002/we.1568.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., Rocha A. , and Gómez-Gesteira M. , 2012: Ocean surface wind simulation forced by different reanalyses: Comparison with observed data along the Iberian Peninsula coast. Ocean Modell., 56, 3142, doi:10.1016/j.ocemod.2012.08.002.

    • Search Google Scholar
    • Export Citation
  • Carvalho, D., Rocha A. , Gómez-Gesteira M. , and Silva Santos C. , 2014: Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens. Environ., 152, 480492, doi:10.1016/j.rse.2014.07.017.

    • Search Google Scholar
    • Export Citation
  • Donelan, A., and Pierson W. J. , 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 49715029, doi:10.1029/JC092iC05p04971.

    • Search Google Scholar
    • Export Citation
  • Edson, J., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Search Google Scholar
    • Export Citation
  • Fewings, M., Lentz S. J. , and Fredericks J. , 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, doi:10.1175/2008JPO3990.1.

    • Search Google Scholar
    • Export Citation
  • Fisher, C. M., Young G. S. , Winstead N. S. , and Haqq-Misra J. D. , 2008: Comparison of synthetic aperture radar–derived wind speeds with buoy wind speeds along the mountainous Alaskan coast. J. Appl. Meteor. Climatol., 47, 13651376, doi:10.1175/2007JAMC1716.1.

    • Search Google Scholar
    • Export Citation
  • Green, J., and Wyatt L. R. , 2006: Row-action inversion of the Barrick–Weber equations. J. Atmos. Oceanic Technol., 23, 501510, doi:10.1175/JTECH1854.1.

    • Search Google Scholar
    • Export Citation
  • Gurgel, K.-W., Essen H.-H. , and Schlick T. , 2006: An empirical method to derive ocean waves from second-order Bragg scattering: Prospects and limitations. IEEE J. Oceanic Eng., 31, 804811, doi:10.1109/JOE.2006.886225.

    • Search Google Scholar
    • Export Citation
  • Harlan, J. A., and Georges T. M. , 1994: An empirical relation between ocean-surface wind direction and the Bragg line ratio of HF radar sea echo spectra. J. Geophys. Res., 99, 79717978, doi:10.1029/93JC03560.

    • Search Google Scholar
    • Export Citation
  • Heron, M., 2004: The effect of bimodal sea spectra on HF radar wind analysis. Oceans ’04: MTS/IEEE Techno-Ocean ’04; Conference Proceedings, Vol. 1, IEEE, 537–541, doi:10.1109/OCEANS.2004.1402972.

  • Heron, M., and Rose R. , 1986: On the application of HF ocean radar to the observation of temporal and spatial changes in wind direction. IEEE J. Oceanic Eng., 11, 210218, doi:10.1109/JOE.1986.1145173.

    • Search Google Scholar
    • Export Citation
  • Hisaki, Y., 2004: Short-wave directional distribution for first-order Bragg echoes of the HF ocean radars. J. Atmos. Oceanic Technol., 21, 105121, doi:10.1175/1520-0426(2004)021<0105:SDDFFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., 2013: Toward real-time, remote observations of the coastal wind resource using high-frequency radar. Mar. Technol. Soc. J., 47, 206217, doi:10.4031/MTSJ.47.4.22.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., de Paolo T. , and Terrill E. , 2012: Improving HF radar estimates of surface currents using signal quality metrics, with application to the MVCO high-resolution radar system. J. Atmos. Oceanic Technol., 29, 13771390, doi:10.1175/JTECH-D-11-00160.1.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., Lentz S. J. , Farrar J. T. , and Ganju N. K. , 2013: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr., 43, 19401958, doi:10.1175/JPO-D-13-020.1.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and Pond S. , 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., 1978: Inversion of second-order radar echoes from the sea. J. Geophys. Res., 83, 959962, doi:10.1029/JC083iC02p00959.

  • Lipa, B. J., and Barrick D. , 1986: Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio Sci., 21, 81100, doi:10.1029/RS021i001p00081.

    • Search Google Scholar
    • Export Citation
  • Lipa, B. J., Nyden B. , Ullman D. S. , and Terrill E. , 2006: SeaSonde radial velocities: Derivation and internal consistency. IEEE J. Oceanic Eng., 31, 850861, doi:10.1109/JOE.2006.886104.

    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., Delgado R. , Vesecky J. F. , Fernandez Y. , Daida J. , and Teague C. , 1999: Mapping coastal winds with HF radar. Proceedings of the IEEE Sixth Working Conference on Current Measurement, S. P. Anderson, Eds., IEEE, 28–32, doi:10.1109/CCM.1999.755209.

  • Schmidt, R. O., 1986: Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propag., 34, 276280, doi:10.1109/TAP.1986.1143830.

    • Search Google Scholar
    • Export Citation
  • Shen, W., Gurgel K.-W. , Voulgaris G. , Schlick T. , and Stammer D. , 2012: Wind-speed inversion from HF radar first-order backscatter signal. Ocean Dyn., 62, 105121, doi:10.1007/s10236-011-0465-9.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 2000: Limits to the inversion of HF radar backscatter for ocean wave measurement. J. Atmos. Oceanic Technol., 17, 16511665, doi:10.1175/1520-0426(2000)017<1651:LTTIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., 2012: Shortwave direction and spreading measured with HF radar. J. Atmos. Oceanic Technol., 29, 286299, doi:10.1175/JTECH-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., and Coauthors, 2003: Validation and intercomparisons of wave measurements and models during the EuroROSE experiments. Coastal Eng., 48, 128, doi:10.1016/S0378-3839(02)00157-6.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., Green J. , and Middleditch A. , 2011: HF radar data quality requirements for wave measurement. Coastal Eng., 58, 327336, doi:10.1016/j.coastaleng.2010.11.005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 163 11
PDF Downloads 207 105 7

Remote Sensing of the Surface Wind Field over the Coastal Ocean via Direct Calibration of HF Radar Backscatter Power

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

The calibration and validation of a novel approach to remotely sense surface winds using land-based high-frequency (HF) radar systems are described. Potentially available on time scales of tens of minutes and spatial scales of 2–3 km for wide swaths of the coastal ocean, HF radar–based surface wind observations would greatly aid coastal ocean planners, researchers, and operational stakeholders by providing detailed real-time estimates and climatologies of coastal winds, as well as enabling higher-quality short-term forecasts of the spatially dependent wind field. Such observations are particularly critical for the developing offshore wind energy community. An autonomous surface vehicle was deployed within the Massachusetts Wind Energy Area, located south of Martha’s Vineyard, Massachusetts, for one month, collecting wind observations that were used to test models of wind-wave spreading and HF radar energy loss, thereby empirically relating radar-measured power to surface winds. HF radar–based extractions of the remote wind speed had accuracies of 1.4 m s−1 for winds less than 7 m s−1, within the optimal range of the radar frequency used. Accuracies degraded at higher winds due to low signal-to-noise ratios in the returned power and poor resolution of the model. Pairing radar systems with a range of transmit frequencies with adjustments of the extraction model for additional power and environmental factors would resolve many of the errors observed.

Corresponding author address: Anthony Kirincich, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543-1050. E-mail: akirincich@whoi.edu

Abstract

The calibration and validation of a novel approach to remotely sense surface winds using land-based high-frequency (HF) radar systems are described. Potentially available on time scales of tens of minutes and spatial scales of 2–3 km for wide swaths of the coastal ocean, HF radar–based surface wind observations would greatly aid coastal ocean planners, researchers, and operational stakeholders by providing detailed real-time estimates and climatologies of coastal winds, as well as enabling higher-quality short-term forecasts of the spatially dependent wind field. Such observations are particularly critical for the developing offshore wind energy community. An autonomous surface vehicle was deployed within the Massachusetts Wind Energy Area, located south of Martha’s Vineyard, Massachusetts, for one month, collecting wind observations that were used to test models of wind-wave spreading and HF radar energy loss, thereby empirically relating radar-measured power to surface winds. HF radar–based extractions of the remote wind speed had accuracies of 1.4 m s−1 for winds less than 7 m s−1, within the optimal range of the radar frequency used. Accuracies degraded at higher winds due to low signal-to-noise ratios in the returned power and poor resolution of the model. Pairing radar systems with a range of transmit frequencies with adjustments of the extraction model for additional power and environmental factors would resolve many of the errors observed.

Corresponding author address: Anthony Kirincich, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., Woods Hole, MA 02543-1050. E-mail: akirincich@whoi.edu
Save