• Cimatoribus, A. A., and van Haren H. , 2015: Temperature statistics above a deep-ocean sloping boundary. J. Fluid Mech., 775, 415435, doi:10.1017/jfm.2015.295.

    • Search Google Scholar
    • Export Citation
  • Cimatoribus, A. A., and van Haren H. , 2016: Estimates of the temperature flux–temperature gradient relation above a sea floor. J. Fluid Mech., 793, 504523, doi:10.1017/jfm.2016.112.

    • Search Google Scholar
    • Export Citation
  • Cimatoribus, A. A., van Haren H. , and Gostiaux L. , 2014: Comparison of Ellison and Thorpe scales from Eulerian ocean temperature observations. J. Geophys. Res. Oceans, 119, 70477065, doi:10.1002/2014JC010132.

    • Search Google Scholar
    • Export Citation
  • Gostiaux, L., and van Haren H. , 2012: Fine-structure contamination by internal waves in the Canary Basin. J. Geophys. Res., 117, C11003, doi:10.1029/2012JC008064.

    • Search Google Scholar
    • Export Citation
  • Kohlrausch, R., 1854: Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys., 167, 179214, doi:10.1002/andp.18541670203.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and Mead R. , 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • Osborn, T. R., and Cox C. S. , 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345, doi:10.1080/03091927208236085.

  • Phillips, J. C., 1996: Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys., 59, 1133, doi:10.1088/0034-4885/59/9/003.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and Gostiaux L. , 2009: High-resolution open-ocean temperature spectra. J. Geophys. Res., 114, C05005, doi:10.1029/2008JC004967.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., and Gostiaux L. , 2010: A deep-ocean Kelvin-Helmholtz billow train. Geophys. Res. Lett., 37, L03605, doi:10.1029/2009GL041890.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., Laan M. , Buijsman D.-J. , Gostiaux L. , Smit M. G. , and Keijzer E. , 2009: NIOZ3: Independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE J. Oceanic Eng., 34, 315322, doi:10.1109/JOE.2009.2021237.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., Gostiaux L. , Laan M. , van Haren M. , van Haren E. , and Gerringa L. J. A. , 2012: Internal wave turbulence near a texel beach. PLoS One, 7, e32535, doi:10.1371/journal.pone.0032535.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., Cimatoribus A. , and Gostiaux L. , 2015: Where large deep-ocean waves break. Geophys. Res. Lett., 42, 23512357, doi:10.1002/2015GL063329.

    • Search Google Scholar
    • Export Citation
  • Wood, S. D., Mangum B. W. , Filliben J. J. , and Tillet S. B. , 1978: An investigation of stability of thermistors. J. Res. Natl. Bur. Stand., 83, 247263, doi:10.6028/jres.083.015.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 87 1
PDF Downloads 116 71 1

A Procedure to Compensate for the Response Drift of a Large Set of Thermistors

View More View Less
  • 1 Royal Netherlands Institute for Sea Research (NIOZ), Het Horntje, North Holland, Netherlands, and Ecological Engineering Laboratory (ECOL), Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • | 2 Royal Netherlands Institute for Sea Research (NIOZ), Het Horntje, North Holland, Netherlands
  • | 3 LMFA UMR CNRS 5509 École Centrale de Lyon, Université de Lyon, Lyon, France
Restricted access

Abstract

The drift of temperature measurements by semiconductor negative temperature coefficient thermistors is a well-known problem. This study analyzes the drift characteristics of the thermistors designed and used at the Royal Netherlands Institute for Sea Research for measuring high-frequency temperature fluctuations in the ocean. These thermistors can be calibrated to high precision and accuracy (better than 1 mK) and have very low noise levels. The thermistors can measure independently for long periods of time (more than one year), and the identification and compensation of the drift are thus essential processing steps. A laboratory analysis showing that the drift is similar, in its functional form, to the drift of commercial thermistors described in the literature is presented. An effective procedure to estimate this drift from ocean observations is described and tested using three datasets from the deep Atlantic Ocean. Since the functional form of the drift rate is, with good approximation, universal among different sensors, the procedure could easily be adapted to other datasets and, the authors argue, to measurements from thermistors by other manufacturers too.

Publisher’s Note: This article was revised on 26 July 2016 to correct the incomplete inclusion of the first author’s current affiliation to the title page of the article.

Current affiliation: Ecological Engineering Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Corresponding author address: Andrea A. Cimatoribus, ECOL, IIE, ENAC, EPFL, GR A1 435, Station 2, CH-1015 Lausanne, Switzerland. E-mail: andrea.cimatoribus@epfl.ch

Abstract

The drift of temperature measurements by semiconductor negative temperature coefficient thermistors is a well-known problem. This study analyzes the drift characteristics of the thermistors designed and used at the Royal Netherlands Institute for Sea Research for measuring high-frequency temperature fluctuations in the ocean. These thermistors can be calibrated to high precision and accuracy (better than 1 mK) and have very low noise levels. The thermistors can measure independently for long periods of time (more than one year), and the identification and compensation of the drift are thus essential processing steps. A laboratory analysis showing that the drift is similar, in its functional form, to the drift of commercial thermistors described in the literature is presented. An effective procedure to estimate this drift from ocean observations is described and tested using three datasets from the deep Atlantic Ocean. Since the functional form of the drift rate is, with good approximation, universal among different sensors, the procedure could easily be adapted to other datasets and, the authors argue, to measurements from thermistors by other manufacturers too.

Publisher’s Note: This article was revised on 26 July 2016 to correct the incomplete inclusion of the first author’s current affiliation to the title page of the article.

Current affiliation: Ecological Engineering Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Corresponding author address: Andrea A. Cimatoribus, ECOL, IIE, ENAC, EPFL, GR A1 435, Station 2, CH-1015 Lausanne, Switzerland. E-mail: andrea.cimatoribus@epfl.ch
Save