• Biau, G., Zorita E. , von Storch H. , and Wackernagel H. , 1999: Estimation of precipitation by kriging in the EOF space of the sea level pressure field. J. Climate, 12, 10701085, doi:10.1175/1520-0442(1999)012<1070:EOPBKI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burrough, P. A., and McDonnell R. A. , 1998: Principles of Geographical Information Systems. Oxford University Press, 333 pp.

  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, doi:10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • David, M., 1977: Geostatistical Ore Reserve Estimation. Developments in Geomathematics, Vol. 2, Elsevier, 364 pp.

  • Eddy, A., 1967: The statistical objective analysis of scalar data fields. J. Appl. Meteor., 6, 597609, doi:10.1175/1520-0450(1967)006<0597:TSOAOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franke, R., 1982: Scattered data interpolation: Test of some methods. Math. Comput., 38, 181200.

  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. R. Hardin, Ed., Israel Program for Scientific Translations, 242 pp.

  • Goodin, W. R., McRa G. J. , and Seinfeld J. H. , 1979: A comparison of interpolation methods for sparse data: Application to wind and concentration fields. J. Appl. Meteor., 18, 761771, doi:10.1175/1520-0450(1979)018<0761:ACOIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, L., 2003: Moving kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng., 56, 111, doi:10.1002/nme.553.

    • Search Google Scholar
    • Export Citation
  • Hansen, T. M., 2004: mGstat: A geostatistical Matlab toolbox. [Available online at http://mgstat.sourceforge.net.]

  • Hartkamp, A. D., De Beurs K. , Stein A. , and White J. W. , 1999: Interpolation techniques for climate variables. NRG-GIS Series 99-01, CIMMYT, 26 pp.

  • Holdaway, M. R., 1996: Spatial modeling and interpolation of monthly temperature using kriging. Climate Res., 6, 215225, doi:10.3354/cr006215.

    • Search Google Scholar
    • Export Citation
  • Huang, C., Zheng X. , Tait A. , Dai Y. , Yang C. , Chen Z. , Li T. , and Wang Z. , 2014: On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data. J. Hydrol., 508, 410417, doi:10.1016/j.jhydrol.2013.11.022.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S. J., Carter J. O. , Moodie K. B. , and Beswick A. R. , 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16, 309330, doi:10.1016/S1364-8152(01)00008-1.

    • Search Google Scholar
    • Export Citation
  • Kebaili Bargaoui, Z., and Chebbi A. , 2009: Comparison of two kriging interpolation methods applied to spatiotemporal rainfall. J. Hydrol., 365, 5673, doi:10.1016/j.jhydrol.2008.11.025.

    • Search Google Scholar
    • Export Citation
  • Kohavi, R., 1995: A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI-95: Proceedings of the 14th International Joint Conference on Artificial Intelligence, C. S. Mellish, Ed., Vol. 2, Morgan Kaufmann Publishers Inc., 1137–1145.

  • Kravchenko, A. N., 2003: Influence of spatial structure on accuracy of interpolation methods. Soil Sci. Soc. Amer. J., 67, 15641571, doi:10.2136/sssaj2003.1564.

    • Search Google Scholar
    • Export Citation
  • Kravchenko, A. N., and Bullock D. G. , 1999: A comparative study of interpolation methods for mapping soil properties. Agron. J., 91, 393400, doi:10.2134/agronj1999.00021962009100030007x.

    • Search Google Scholar
    • Export Citation
  • Largueche, F. Z. B., 2006: Estimating soil contamination with kriging interpolation method. Amer. J. Appl. Sci., 3, 18941898, doi:10.3844/ajassp.2006.1894.1898.

    • Search Google Scholar
    • Export Citation
  • Li, J., and Heap A. D. , 2011: A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inf., 6, 228241, doi:10.1016/j.ecoinf.2010.12.003.

    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1963: Principles of geostatistics. Econ. Geol., 58, 12461266, doi:10.2113/gsecongeo.58.8.1246.

  • Orùs, R., Hernández-Pajares M. , Juan J. M. , and Sanz J. , 2005: Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J. Atmos. Sol.-Terr. Phys., 67, 15981609, doi:10.1016/j.jastp.2005.07.017.

    • Search Google Scholar
    • Export Citation
  • Peck, E. L., 1997: Quality of hydrometeorological data in cold regions. J. Amer. Water Resour. Assoc., 33, 125134, doi:10.1111/j.1752-1688.1997.tb04089.x.

    • Search Google Scholar
    • Export Citation
  • Physick, W. L., Cope M. E. , Lee S. , and Hurley P. J. , 2007: An approach for estimating exposure to ambient concentrations. J. Exposure Sci. Environ. Epidemiol., 17, 7683, doi:10.1038/sj.jes.7500523.

    • Search Google Scholar
    • Export Citation
  • Sampson, P. D., Richards M. , Szpiro A. A. , Bergen S. , Sheppard L. , Larson T. V. , and Kaufman J. D. , 2013: A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM2.5 concentrations in epidemiology. Atmos. Environ., 75, 383392, doi:10.1016/j.atmosenv.2013.04.015.

    • Search Google Scholar
    • Export Citation
  • Stephens, J. J., and Stitt J. M. , 1970: Optimum influence radii for interpolation with the method of successive corrections. Mon. Wea. Rev., 98, 680687, doi:10.1175/1520-0493(1970)098<0680:OIRFIW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tongsuk, P., and Kanok-Nukulchai W. , 2004: Further investigation of element-free Galerkin method using Moving Kriging interpolation. Int. J. Comput. Methods, 1, 345, doi:10.1142/S0219876204000162.

    • Search Google Scholar
    • Export Citation
  • Webster, R., and Oliver M. A. , 2001: Geostatistics for Environmental Scientists. Wiley, 271 pp.

  • Willmott, C. J., Rowe C. M. , and Philpot W. D. , 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Amer. Cartogr., 12, 516, doi:10.1559/152304085783914686.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 75 4
PDF Downloads 110 63 17

A Modified Interpolation Method for Surface Total Nitrogen in the Bohai Sea

View More View Less
  • 1 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
  • | 2 Physical Oceanography Laboratory, Ocean University of China, Qingdao, and Guangdong Province Key Laboratory for Coastal Ocean Variation and Disaster Prediction Technologies, College of Ocean and Meteorology, Guangdong Ocean University, Guangzhou, China
  • | 3 Physical Oceanography Laboratory, Ocean University of China, Qingdao, and Beihai Marine Environmental Monitoring Center Station, State Oceanic Administration, BeiHai, China
  • | 4 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
Restricted access

Abstract

A modified Cressman interpolation method (MCIM) is presented for the routine monitoring data of total nitrogen (TN) in the Bohai Sea to reduce interpolation errors by decreasing the influence radius and introducing background value. In twin experiments, two prescribed distributions are successfully estimated by MCIM with lower interpolation errors than the traditional Cressman interpolation method (TCIM) and the kriging method. In practical experiments, cross validation is applied to evaluate the interpolation results for four quarters in 2009 and 2010. Practical experimental results show that the interpolation results obtained with MCIM are greatly improved and can describe the spatial distribution characteristics of TN in the Bohai Sea with lower mean absolute error than the kriging method.

Corresponding author address: Xianqing Lv, Physical Oceanography Laboratory, Ocean University of China, 238 Songling Road, Qingdao 266003, China. E-mail: xqinglv@ouc.edu.cn

Abstract

A modified Cressman interpolation method (MCIM) is presented for the routine monitoring data of total nitrogen (TN) in the Bohai Sea to reduce interpolation errors by decreasing the influence radius and introducing background value. In twin experiments, two prescribed distributions are successfully estimated by MCIM with lower interpolation errors than the traditional Cressman interpolation method (TCIM) and the kriging method. In practical experiments, cross validation is applied to evaluate the interpolation results for four quarters in 2009 and 2010. Practical experimental results show that the interpolation results obtained with MCIM are greatly improved and can describe the spatial distribution characteristics of TN in the Bohai Sea with lower mean absolute error than the kriging method.

Corresponding author address: Xianqing Lv, Physical Oceanography Laboratory, Ocean University of China, 238 Songling Road, Qingdao 266003, China. E-mail: xqinglv@ouc.edu.cn
Save