• An, N., and Wang K. , 2015: A comparison of MODIS-derived cloud fraction with surface observations at five SURFRAD sites. J. Appl. Meteor. Climatol., 54, 10091020, doi:10.1175/JAMC-D-14-0206.1.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and Stull R. B. , 2002: Accuracy of point and line measures of boundary layer cloud amount. J. Appl. Meteor., 41, 640650, doi:10.1175/1520-0450(2002)041<0640:AOPALM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boers, R., de Haij M. J. , Wauben W. M. F. , Baltink H. K. , van Ulft L. H. , Savenije M. , and Long C. N. , 2010: Optimized fractional cloudiness determination from five ground-based remote sensing techniques. J. Geophys. Res., 115, D24116, doi:10.1029/2010JD014661.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., Klinker E. , Betts A. K. , and Coakley J. A. , 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52, 27362751, doi:10.1175/1520-0469(1995)052<2736:COCSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cazorla, A., Olmo F. J. , and Alados-Arboledas L. , 2008: Development of a sky imager for cloud cover assessment. J. Opt. Soc. Amer., 25A, 2939, doi:10.1364/JOSAA.25.000029.

    • Search Google Scholar
    • Export Citation
  • Dong, X., Minnis P. , and Xi B. , 2005: A climatology of midlatitude continental clouds from the ARM SGP Central Facility: Part I: Low-level cloud macrophysical, microphysical, and radiative properties. J. Climate, 18, 13911410, doi:10.1175/JCLI3342.1.

    • Search Google Scholar
    • Export Citation
  • Dong, X., Xi B. , and Minnis P. , 2006: A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing. J. Climate, 19, 17651783, doi:10.1175/JCLI3710.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Karl T. R. , Sun B. , and Trenberth K. E. , 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87, 597606, doi:10.1175/BAMS-87-5-597.

    • Search Google Scholar
    • Export Citation
  • Genkova, I., Long C. N. , Minnis P. , Heck P. W. , and Khaiyer M. M. , 2004: Point-to-point comparison of satellite and ground-based cloud properties at the ARM Southern Great Plains Central Facility. Proc. 14th ARM Science Team Meeting, Albuquerque, New Mexico, ARM, 18 pp. [Available online at http://www.arm.gov/publications/proceedings/conf14/extended_abs/genkova2-i.pdf.]

  • Hahn, C. J., Warren S. G. , and London J. , 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. J. Climate, 8, 14291446, doi:10.1175/1520-0442(1995)008<1429:TEOMOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., and McGuffie K. , 1990: Are cloud amounts estimated from satellite sensor and conventional surface-based observations related? Int. J. Remote Sens., 11, 543550, doi:10.1080/01431169008955038.

    • Search Google Scholar
    • Export Citation
  • Kassianov, E., Ackerman T. , Marchand R. , and Ovtchinnikov M. , 2003: Satellite multiangle cumulus geometry retrieval: Case study. J. Geophys. Res., 108, 4117, doi:10.1029/2002JD002350.

    • Search Google Scholar
    • Export Citation
  • Kassianov, E., Long C. N. , and Ovtchinnikov M. , 2005: Cloud sky cover versus cloud fraction: Whole-sky simulations and observations. J. Appl. Meteor., 44, 8698, doi:10.1175/JAM-2184.1.

    • Search Google Scholar
    • Export Citation
  • Koehler, T. L., Johnson R. W. , and Shields J. E. , 1991: Status of the whole sky imager database. Proceedings of the Cloud Impacts on DoD Operations and Systems (CIDOS-91), J. W. Snow and D. D. Grantham, Eds., Science and Technology Corp., 77–80.

  • Lazarus, S. M., Krueger S. K. , and Mace G. G. , 2000: A cloud climatology of the Southern Great Plains ARM CART. J. Climate, 13, 17621775, doi:10.1175/1520-0442(2000)013<1762:ACCOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., 2010: Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images. Open Atmos. Sci. J., 4, 4552, doi:10.2174/1874282301004010045.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., Sabburg J. M. , and Calbó J. , 2006: Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Oceanic Technol., 23, 633652, doi:10.1175/JTECH1875.1.

    • Search Google Scholar
    • Export Citation
  • Morris, V. R., 2012: Vaisala ceilometer (VCEIL) handbook. ARM Climate Research Facility Tech. Rep. DOE/SC-ARM/TR-020, 18 pp. [Available online at http://www.arm.gov/publications/tech_reports/handbooks/vceil_handbook.pdf.]

  • Nadolski, V. L., 1998: Automated Surface Observing System (ASOS) user’s guide. NOAA, 61 pp.

  • Pfister, G., McKenzie R. L. , Liley J. B. , Thomas A. , Forgan B. W. , and Long C. N. , 2003: Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. J. Appl. Meteor., 42, 14211434, doi:10.1175/1520-0450(2003)042<1421:CCBOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, D. J., 1998: On the comparability of cloud fractions derived from whole sky imager and ceilometer data. Lawrence Livermore National Laboratory Rep. UCRL-ID-129839, 17 pp.

  • Rodriguez, D. J., and Krueger S. K. , 1999: Comparisons of cloud cover estimates and cloud fraction profiles from ARM’s cloud-detecting instruments and GOES-8 data. Proc. Ninth ARM Science Team Meeting, San Antonio, TX, ARM, 8 pp. [Available online at https://www.arm.gov/publications/proceedings/conf09/extended_abs/rodriguez_dj.pdf.]

  • Sabburg, J., and Long C. N. , 2004: Improved sky imaging for studies of enhanced UV irradiance. Atmos. Chem. Phys., 4, 25432552, doi:10.5194/acp-4-2543-2004.

    • Search Google Scholar
    • Export Citation
  • Schreiner, A. J., Strabala K. I. , Unger D. A. , Menzel W. P. , Ellrod G. P. , and Pellet J. L. , 1993: A comparison of ground and satellite observations of cloud cover. Bull. Amer. Meteor. Soc., 74, 18511861, doi:10.1175/1520-0477(1993)074<1851:ACOGAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shields, J. E., Karr M. E. , Johnson R. W. , and Burden A. R. , 2013: Day/night whole sky imagers for 24-h cloud and sky assessment: History and overview. Appl. Opt., 52, 16051616, doi:10.1364/AO.52.001605.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75, 12011221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wacker, S., and Coauthors, 2015: Cloud observations in Switzerland using hemispherical sky cameras. J. Geophys. Res. Atmos., 120, 695707, doi:10.1002/2014JD022643.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Sassen K. , 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 1975: Manual on the Observation of Clouds and Other Meteors. Vol. 1, International Cloud Atlas, WMO-407, 155 pp.

  • Wu, W., Liu Y. , Jensen M. P. , Toto T. , Foster M. J. , and Long C. N. , 2014: A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United States. J. Geophys. Res. Atmos., 119, 34383459, doi:10.1002/2013JD019813.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 490 301 15
PDF Downloads 394 223 11

Error Characteristics of Ceilometer-Based Observations of Cloud Amount

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 Environmental Studies Program, Lewis and Clark College, Portland, Oregon
Restricted access

Abstract

Ceilometer observations of cloud cover are an important component of the automated weather observation network. However, the accuracy of its measurements of cloud amount is impacted by the limited vertical range and areal extent of its observations. A multiyear collocated dataset of observations from a laser ceilometer, a total sky imager (TSI), and a micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility is used to simulate the observations of operational ceilometers and to analyze the magnitude of the errors associated with ceilometer-based observations of cloud amount. The limited areal coverage of ceilometers results in error when skies are heterogeneous, but these errors are small compared to those caused by the limited vertical range: observations of clear sky or few clouds are often in error as the instrument cannot detect the presence of upper-level clouds. The varying quantities of upper-level clouds mean that errors are diurnally and seasonally dependent, with the greatest error at the SGP site happening in the morning and summer, respectively. Overall, the spatial homogeneity and low base of stratus clouds means that ceilometer-based observations of overcast skies are the most accurate, with a root-mean-square error of cloud fraction in overcast conditions an order of magnitude lower than for the dataset as a whole.

Corresponding author address: Timothy J. Wagner, CIMSS, 1225 W Dayton St., Madison, WI 53706. E-mail: tim.wagner@ssec.wisc.edu

Abstract

Ceilometer observations of cloud cover are an important component of the automated weather observation network. However, the accuracy of its measurements of cloud amount is impacted by the limited vertical range and areal extent of its observations. A multiyear collocated dataset of observations from a laser ceilometer, a total sky imager (TSI), and a micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility is used to simulate the observations of operational ceilometers and to analyze the magnitude of the errors associated with ceilometer-based observations of cloud amount. The limited areal coverage of ceilometers results in error when skies are heterogeneous, but these errors are small compared to those caused by the limited vertical range: observations of clear sky or few clouds are often in error as the instrument cannot detect the presence of upper-level clouds. The varying quantities of upper-level clouds mean that errors are diurnally and seasonally dependent, with the greatest error at the SGP site happening in the morning and summer, respectively. Overall, the spatial homogeneity and low base of stratus clouds means that ceilometer-based observations of overcast skies are the most accurate, with a root-mean-square error of cloud fraction in overcast conditions an order of magnitude lower than for the dataset as a whole.

Corresponding author address: Timothy J. Wagner, CIMSS, 1225 W Dayton St., Madison, WI 53706. E-mail: tim.wagner@ssec.wisc.edu
Save